


NATIONAL ECONOMIC AND DEVELOPMENT AUTHORITY

# **Volume 2: Philippine Water Supply and Sanitation Master Plan**

# National Water Supply and Sanitation Databook and Regional Roadmaps



Copyright 2019 by the National Economic and Development Authority

All rights reserved The use of this material is encouraged with appropriate credit given to the copyright owner.

Published by the: National Economic and Development Authority (NEDA) 12 Saint Josemaria Escriva Drive, Ortigas Center

Pasig City, Philippines +63 2 631-3724 / 631-0945 local 311 to 315

www.neda.gov.ph

Philippine Water Supply and Sanitation Master Plan

# Volume II: Water Supply and Sanitation Databook and Regional Roadmaps

# **Table of Contents**

| Intro | duction                                              | 12 |
|-------|------------------------------------------------------|----|
| wss   | Sector                                               | 14 |
|       | Access to Safe Water                                 | 14 |
|       | Access to Sanitation                                 | 17 |
| Wate  | r Resources                                          | 24 |
|       | Water Bodies                                         | 24 |
|       | Estimating the Country's Water Resources Potential   | 27 |
|       | Surface Water Potential                              | 27 |
|       | Groundwater Potential                                | 28 |
|       | Water Use                                            | 31 |
|       | Water Availability, Water Stress, and Water Scarcity | 32 |
|       | Climate and Rainfall                                 | 34 |
| Dema  | and                                                  | 38 |
|       | Population Projection                                | 38 |
|       | Water Demand Projection                              | 42 |
| Sanit | tation                                               | 46 |
|       | Open Defecation                                      | 46 |
|       | Wastewater and Domestic Biological Oxygen Demand     | 48 |
|       | Water Quality                                        | 54 |
|       | Waterborne Diseases                                  | 56 |
| wss   | Infrastructure                                       | 57 |
|       | Water Supply Sector                                  | 57 |
|       | Sanitation Sector                                    | 61 |
| wss   | Gaps                                                 | 62 |
|       | Issues and Challenges                                | 62 |
|       | Vision                                               | 63 |
|       | Sector Goals and Outcomes: Benchmarks and Targets    | 63 |
| Addro | essing the Gaps                                      | 64 |
|       | Proposed Projects and Investments                    | 64 |
|       | Strategic Interventions                              | 68 |
|       |                                                      |    |

**Succeeding Sub-Sections** 

**Regional Roadmaps and Databook** 

|                                                                                                                                                    |                                                                                                  | List of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Table                                                                                                                                              | 1                                                                                                | PSA Safe Water Source Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                   |
| Table                                                                                                                                              | 2                                                                                                | Sanitation Service Ladder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                   |
| Table                                                                                                                                              | 3                                                                                                | Sanitation Facilities by NDHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                   |
| Table                                                                                                                                              | 4                                                                                                | Percentage per Service Level by PSA and JMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                                                                   |
| Table                                                                                                                                              | 5                                                                                                | Major Hosts for Aquaculture Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                                                                                                                   |
| Table                                                                                                                                              | 6                                                                                                | Major River Basins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                   |
| Table                                                                                                                                              | 7                                                                                                | Data Availability of Water Resources Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                                                                                                   |
| Table                                                                                                                                              | 8                                                                                                | Aquifer Classes Based on MGB Aquifer Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                   |
| Table                                                                                                                                              | 9                                                                                                | Number of Cases of Waterborne Diseases, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                   |
| Table                                                                                                                                              | 10                                                                                               | Service Coverage of Water Service Providers by Management Type (Listahang Tubig Website)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57                                                                                                                   |
| Table                                                                                                                                              | 11                                                                                               | Water Service Providers by Management Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57                                                                                                                   |
| Table                                                                                                                                              | 12                                                                                               | Coverage of Septage Management Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61                                                                                                                   |
| Table                                                                                                                                              | 13                                                                                               | Coverage of Sewerage System Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61                                                                                                                   |
| Table                                                                                                                                              | 14                                                                                               | Issues and Challenges in the Water Supply and Sanitation Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62                                                                                                                   |
| Table                                                                                                                                              | 15                                                                                               | Sector Goals, Benchmarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63                                                                                                                   |
| Table                                                                                                                                              | 16                                                                                               | Proposed Water Supply Sector Benchmarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                   |
| Table                                                                                                                                              | 17                                                                                               | Proposed Sanitation Sector Benchmarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                                                                                                   |
| Table                                                                                                                                              | 18                                                                                               | Investment Requirements for Potential Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                   |
| Table                                                                                                                                              | 19                                                                                               | Investment Requirements for Identified Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65                                                                                                                   |
| Table                                                                                                                                              | 20                                                                                               | Proposed Strategic Interventions for Water Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                                                                   |
| Table                                                                                                                                              | 21                                                                                               | Capital Investments Required for the Water Supply Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68                                                                                                                   |
| Table                                                                                                                                              | 22                                                                                               | Proposed Strategic Interventions for Sanitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69                                                                                                                   |
|                                                                                                                                                    |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |
|                                                                                                                                                    |                                                                                                  | List of Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page                                                                                                                 |
| Finung                                                                                                                                             | 4                                                                                                | List of Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page                                                                                                                 |
| Figure                                                                                                                                             | -                                                                                                | Main Sources of Water Supply of the Population (2015 FIES, PSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                   |
| Figure                                                                                                                                             | 2                                                                                                | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14<br>14                                                                                                             |
| Figure<br>Figure                                                                                                                                   | 2<br>3                                                                                           | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14<br>14<br>17                                                                                                       |
| Figure<br>Figure<br>Figure                                                                                                                         | 2                                                                                                | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14<br>14<br>17<br>17                                                                                                 |
| Figure<br>Figure<br>Figure<br>Figure                                                                                                               | 2<br>3                                                                                           | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>14<br>17<br>17<br>18                                                                                           |
| Figure<br>Figure<br>Figure<br>Figure                                                                                                               | 2<br>3<br>4                                                                                      | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>14<br>17<br>17<br>18<br>21                                                                                     |
| Figure<br>Figure<br>Figure<br>Figure                                                                                                               | 2<br>3<br>4<br>5                                                                                 | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br>14<br>17<br>17<br>18<br>21<br>22                                                                               |
| Figure<br>Figure<br>Figure<br>Figure                                                                                                               | 2<br>3<br>4<br>5<br>6                                                                            | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br>14<br>17<br>17<br>18<br>21                                                                                     |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                     | 2<br>3<br>4<br>5<br>6<br>7                                                                       | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br>14<br>17<br>17<br>18<br>21<br>22                                                                               |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                           | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                             | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28                                                                         |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                             | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines                                                                                                                                                                                                                                                                                                                                                                        | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31                                                                   |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                       | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                 | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines                                                                                                                                                                                                                                                                                                                                                                        | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31                                                             |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                             | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                           | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region                                                                                                                                                                                                                                                                                                           | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31                                                       |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                     | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector                                                                                                                                                                                                                                                  | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32                                           |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                               | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector<br>Water Use by Type of Source (2017, NWRB)                                                                                                                                                                                                      | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32<br>32                                     |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                         | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                         | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector<br>Water Use by Type of Source (2017, NWRB)<br>Average Temperature per Climate Type                                                                                                                                                              | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32<br>32<br>32<br>34                         |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                               | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                   | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector<br>Water Use by Type of Source (2017, NWRB)<br>Average Temperature per Climate Type<br>Average Rainfall per Climate Type                                                                                                                         | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32<br>32<br>32<br>34<br>34                   |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17             | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector<br>Water Use by Type of Source (2017, NWRB)<br>Average Temperature per Climate Type<br>PAGASA Projection Maps for 2020 and 2050                                                                                                                                                   | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32<br>32<br>32<br>34<br>34<br>34<br>37       |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure           | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector<br>Water Use by Type of Source (2017, NWRB)<br>Average Temperature per Climate Type<br>PAGASA Projection Maps for 2020 and 2050<br>Population Projection per Region, 2040                                                                        | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32<br>32<br>34<br>34<br>34<br>37<br>38       |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | Main Sources of Water Supply of the Population (2015 FIES, PSA)<br>Trend of Access to State Water Supply Data (PSA)<br>Regional Access to Water Supply<br>Standards for Safe and Affordable Drinking Water<br>Access to Safe and Affordable Drinking Water, NDHS<br>Trend of Access to Basic Sanitation Data<br>Regional Access to Sanitation Data<br>Regional Access to Sanitation<br>Surface Water Potential per WRR<br>Groundwater Potential per WRR<br>Groundwater Potential per Water Resources Region (in MCM / Year)<br>Total Water Resources Potential of the Philippines<br>Total Water Resources Potential per Administrative Region<br>Water Use per Sector<br>Water Use by Type of Source (2017, NWRB)<br>Average Temperature per Climate Type<br>PAGASA Projection Maps for 2020 and 2050<br>Population Projection per Region, 2040<br>Water Demand Projection, 2040 | 14<br>14<br>17<br>17<br>18<br>21<br>22<br>28<br>31<br>31<br>31<br>31<br>32<br>32<br>34<br>34<br>34<br>37<br>38<br>42 |

# Acronyms

| AIP        | Annual Investment Program                                          |
|------------|--------------------------------------------------------------------|
| AM         | Assistance to Municipalities                                       |
| APIS       | Annual Poverty Incidence Survey                                    |
| ARMM       | Autonomous Region of Muslim Mindanao                               |
| BOD        | Biological Oxygen Demand                                           |
| BRS        | Bureau of Research and Standards                                   |
| BUB        | Bottom-up Budgeting                                                |
| BWSA       | Barangay Water and Sanitation Association                          |
| CAR        | Cordillera Administrative Region                                   |
| CDA        | Cooperative Development Authority                                  |
| CALABARZON | Calamba, Laguna, Batangas, Rizal and Quezon                        |
| CLTS       | Community Led Total Sanitation                                     |
| CPH        | Census of Population and Housing                                   |
| CSO        | Civil Society Organizations                                        |
| CWA        | Clean Water Act                                                    |
| DA         | Department of Agriculture                                          |
| DALY       | Disability-adjusted Life Year                                      |
| DENR       | Department of Environment and Natural Resources                    |
| DILG       | Department of the Interior and Local Government                    |
| DJF        | December, January, and February                                    |
| DOH        | Department of Health                                               |
| DPWH       | Department of Public Works and Highways                            |
| DTI        | Department of Trade and Industry                                   |
| EMB        | Environmental Management Bureau                                    |
| ENSO       | El Niño - Southern Oscillation                                     |
| ESC        | Environmental Sanitation Clearance                                 |
| FAO        | Food and Agriculture Organization                                  |
| FDC        | Flow Duration Curve                                                |
| FHSIS      | Field Health Services Information System                           |
| FIES       | Family Income and Expenditure Survey                               |
| НН         | Household                                                          |
| HLURB      | Housing and Land Use Regulatory Board                              |
| HUC        | Highly Urbanized City                                              |
| IA         | Implementing Agency                                                |
| JICA       | Japan International Cooperation Agency                             |
| JJA        | June, July and August                                              |
| JMP        | Joint Monitoring Programme                                         |
| JV         | Joint Venture                                                      |
| KPI        | Key Performance Indicator                                          |
| LDP        | Local Development Plan                                             |
| LGC        | Local Government Code                                              |
| LGU        | Local Government Unit                                              |
| LSSP       | Local Sustainable Sanitation Plan                                  |
| LWUA       | Local Water Utilities Administration                               |
| M&E        | Monitoring and Evaluation                                          |
| MAM        | March, April and May                                               |
| MDG        | Millennium Development Goals                                       |
| MGB        | Mines and Geosciences Bureau                                       |
| MIMAROPA   | Occidental Mindoro, Oriental Mindoro, Marinduque, Romblon, Palawan |
| MWSS       | Metropolitan Waterworks and Sewerage System                        |
| NAMRIA     | National Mapping and Resource Information Authority                |
| NAPC       | National Anti-Poverty Commission                                   |
| NCR        | National Capital Region                                            |
| NDHS       | National Demographic and Health Survey                             |
| NEDA       | National Economic and Development Authority                        |
| NGO        | Non-Government Organization                                        |
| NRW        | Non-Revenue Water                                                  |
| NSSMP      | National Sewerage and Septage Master Plan                          |
|            |                                                                    |

| NWRB       | National Water Resources Board                                               |
|------------|------------------------------------------------------------------------------|
| NWRC       | National Water Resources Council                                             |
| OBA        | Output-based aid                                                             |
| O&M        | Operation and Management                                                     |
| ODF        | Open Defecation Free                                                         |
| PAGASA     | Philippine Atmospheric, Geophysical and Astronomical Services Administration |
| PAR        | Philippine Area of Responsibility                                            |
| PAWD       | Philippine Association of Water Districts                                    |
| PDP        | Philippine Development Plan                                                  |
| PDRS       | Project Development and Other Related Studies                                |
| PhATS      | Phased Approach to Total Sanitation                                          |
| PIP        | Priority Investment Program                                                  |
| PNSDW      | Philippine National Standards for Drinking Water                             |
| PSA        | Philippine Statistics Authority                                              |
| PWSSMP     | Philippine Water Supply and Sanitation Master Plan                           |
| RB         | River Basin                                                                  |
| RBCO       | River Basin Control Office                                                   |
| RWSA       | Rural Water Supply Association                                               |
| Salintubig | Sagana at Ligtas na Tubig sa Lahat                                           |
| SDG        | Sustainable Development Goals                                                |
| SEC        | Securities and Exchange Commission                                           |
| SMP        | Septage Management Program                                                   |
| SON        | September, October, November                                                 |
| STP        | Septage Treatment Plant                                                      |
| TSS        | Total Suspended Solids                                                       |
| UN Water   | United Nations Water                                                         |
| UNICEF     | United Nations Children's Fund                                               |
| VIP        | Ventilated Improved Pit                                                      |
| WASH       | Water, Sanitation and Hygiene                                                |
| WD         | Water District                                                               |
| WDM        | Water Demand Management                                                      |
| WHO        | World Health Organization                                                    |
| WQMA       | Water Quality Management Area                                                |
| WRI        | World Resources Institute                                                    |
| WRR        | Water Resources Region                                                       |
| WSP        | Water Service Provider                                                       |
| WSS        | Water Supply and Sanitation                                                  |
| ZOD        | Zero Open Defecation                                                         |
|            |                                                                              |

# Units

% percent

| °C   | degree Celsius            |
|------|---------------------------|
| CY   | Calendar Year             |
| km²  | square kilometer          |
| km   | kilometer                 |
| kph  | kilometers per hour       |
| lpcd | liters per capita per day |
| lps  | liters per second         |
| m³   | cubic meter               |
| MCM  | million cubic meter       |
| mm   | millimeter                |
| mg/L | milligrams per liter      |
| PhP  | Philippine Peso           |
|      |                           |

# About the Water Supply and Sanitation Databook and Regional Roadmaps

The Philippine Water Supply and Sanitation Databook 2018 supplements the Philippine Water Supply and Sanitation Master Plan (PWSSMP) (2018-2040) with maps, data

**sets, and charts** related to the water supply and sanitation (WSS) sector of the Philippines.

While it is apparent that the WSS sector, to date, struggles with the availability and consistency of data, this Databook presents currently available data from various sources as the basis for the PWSSMP 2018-2040. Sources of data are indicated accordingly.

## The Regional Water Supply and Sanitation Roadmaps present the framework, vision, goals, and strategies formulated to achieve

**the Plan targets.** They are formulated based on the analysis of the region's existing water supply and sanitation situation through a consultative study and assessment participated in by various stakeholders composed of representatives from regional line agencies, local government units, water and sanitation service providers, and non-governmental organizations and civil society organizations.

# PWSSMP 2018-2040

### **Objectives and Guiding Principles**

The Philippine Water Supply and Sanitation Master Plan (2018-2040) sets the direction towards achieving the WSS-related targets in the (i) Philippine Development Plan (PDP) 2017-2022, (ii) Sustainable Development Goals (SDG) 2030, and (iii) Clean Water Act of 2004 (CWA).

Towards achieving the WSS targets, the following are the Guiding Principles used in preparing the master plan:

- The water supply covered in the PWSSMP pertains to the water supply for drinking and domestic use only. This is consistent with the key performance indicator targets on water supply.
- Three (3) potential water sources are considered: (i) surface water, (ii) groundwater, and (iii) rainwater.
   Excessive use of groundwater (i.e. over-extraction), however, is discouraged to avoid groundwaterrelated subsidence.
- Even with the country's abundant resources, the country is experiencing water stress with overall water availability per capita per year<sup>1</sup> of 1,446 cubic meters<sup>2</sup> (m<sup>3</sup>). The country's topology also makes water resources unevenly distributed and, in some cases, not easily accessible. Rainwater can be optimized in such areas.

cities (HUC), are preferred. Basic sanitation (i.e., toilets with septic tanks), however, will suffice for rural areas of dense population and where drain fields are adequate.

- Climate change and natural hazards (i.e., erosion) remain a challenge in ensuring continuous supply of clean and safe water.
- The fragmented WSS sector of the country begs for a better institutional setup.
- The PWSSMP shall be prepared by maximizing available data while recommending measures towards improving availability and management of quality and timely WSS sector data.
- WSS infrastructure investments are to be established with the local government units during the regional consultation workshops. Where gaps remain, cost estimates will be done using infrastructure unit cost per household. These investments include new or expansion of infrastructure to address the gaps as well as improvement of existing infrastructure to ensure continuous WSS service to beneficiaries.

### **PWSSMP Framework**

The PWSSMP is envisioned to address the WSS gaps and achieve the national targets by:

- bridging infrastructure gaps and delivering sustainable services,
- anticipating increase in population,
- ensuring climate- and disaster-resilient structures,
- optimizing research and development,
- investing on WSS data and data management, and
- addressing the fragmented sector with a viable institutional setup and financing schemes.

# Databook and Regional WSS Roadmap Presentation

This Databook attempts to provide a snapshot of the water supply and sanitation sector as well as the basis and data reference of the PWSSMP (2018-2040). As such, the Databook is divided into 18 sections. (Two of these sections deal with nationwide and regional data.)

Each section is divided into seven chapters:

- Chapter 1: WSS Status (2015): What is the state of water supply and sanitation in the Philippines in terms of household access?
- Chapter 2: Water Supply: Where are water sources found across the regions?

- Service level of water supply is classified based on how water supply is accessed by households (i.e., from source, from communal faucets, or from private faucets). It does not, however, define or guarantee the accessibility, quality, quantity, and reliability of water supply.
- Open defecation and unimproved sanitation facilities remain a challenge in the country and continue to contaminate surface waters and groundwater. While data on the extent of contamination remain unavailable, the incidence of waterborne diseases is significantly high in areas where open defecation and unimproved sanitation facilities are prevalent.
- To safely manage excreta and wastewater (i.e., blackwater, graywater), septage and sewage treatment facilities especially in highly urbanized

- Chapter 3: Demand: What is the current and future water supply demand?
- Chapter 4: Excreta, Wastewater, and Water Contamination: What is the current and future demand for sanitation facilities?
- Chapter 5: Existing WSS Infrastructure: Current infrastructure and Service Providers
- Chapter 6: WSS Gaps
- Chapter 7: Addressing the Gaps: Proposed Projects and Investments

The regional subsections serve as the regional WSS roadmaps. They shall present the vision, goals, strategies, and programs in regard to providing safe and adequate WSS services to each region's growing population.

<sup>1</sup> United Nations Water says an area is experiencing water stress when annual water supply drops below 1,700 m<sup>3</sup> per person. The values for the water availability per capita per year cover domestic water supply and water uses for other sectors (e.g., agricultural, industrial, commercial, power).

<sup>2</sup> Computed based on groundwater estimates plus surface water estimates at 80% dependability 20°0,000'N

40°0.000'E

# Introduction

# Philippines

# The Philippines is an archipelago comprising 7,107

**islands.** It is bounded by the Bashi Channel in the north, the Philippine Sea (Pacific Ocean) in the east, the Sulu Sea and Celebes Sea in the south and the South China Sea in the west. With a total area of approximately 300,000 square kilometers (km<sup>2</sup>), the country is divided into three major island groups and 17 administrative regions namely:

- Luzon (with an area of 142,000 km<sup>2</sup>) is composed of eight administrative regions: Ilocos (Region I), Cagayan Valley (Region II), Central Luzon (Region III), Calabarzon (Region IV-A), MIMAROPA Region, Bicol Region (Region V), National Capital Region (NCR) and Cordillera Administrative Region (CAR);
- Visayas (with an area of 56,000 km<sup>2</sup>) is composed of three administrative regions: Western Visayas (Region VI), Central Visayas (Region VII) and Eastern Visayas (Region VIII); and
- Mindanao (with an area of 102,000 km<sup>2</sup>) is composed of six administrative regions: Zamboanga Peninsula (Region IX), Northern Mindanao (Region X), Davao Region (Region XI), SOCCSKSARGEN (Region XII), Caraga Region (Region XIII) and Autonomous Region in Muslim Mindanao (ARMM).

About 94% of the total land area of the Philippines is contained within the 11 principal islands, namely Luzon, Mindanao, Samar, Negros, Palawan, Panay, Mindoro, Leyte, Cebu, Bohol and Masbate in order of their sizes.

Due to its archipelagic nature, the country is characterized by a variety of topographical features – from the low marsh, a foot or so above high water at the head of Manila Bay, to the high mountain masses, the highest peak being Mt. Apo in Mindanao with an elevation of approximately 2,954 meters (m) above mean sea level.

The largest mountainous areas and the most extensive plains are found in the island of Luzon. Large inland lakes are few in the Philippines, but semi-enclosed bays are too many to mention. There are four large marshes – two in Mindanao, one in Central Luzon and one in Mindoro. A great variety of rocks exists in the Philippines – igneous, sedimentary, and metamorphic. Rock outcrop is rare, and old rocks are thickly covered with sedimentary and volcanic ejecta. Basement complex is below most of the recognized sedimentary rocks and is generally made up of gabbro, andesite's, agglomerates, serpentine, greisses, schist, volcanic breccia's, volcanic stuff, quartsize and basalt flows. Igneous rock is generally basic to semi- basic, that is low to intermediate in silica content.

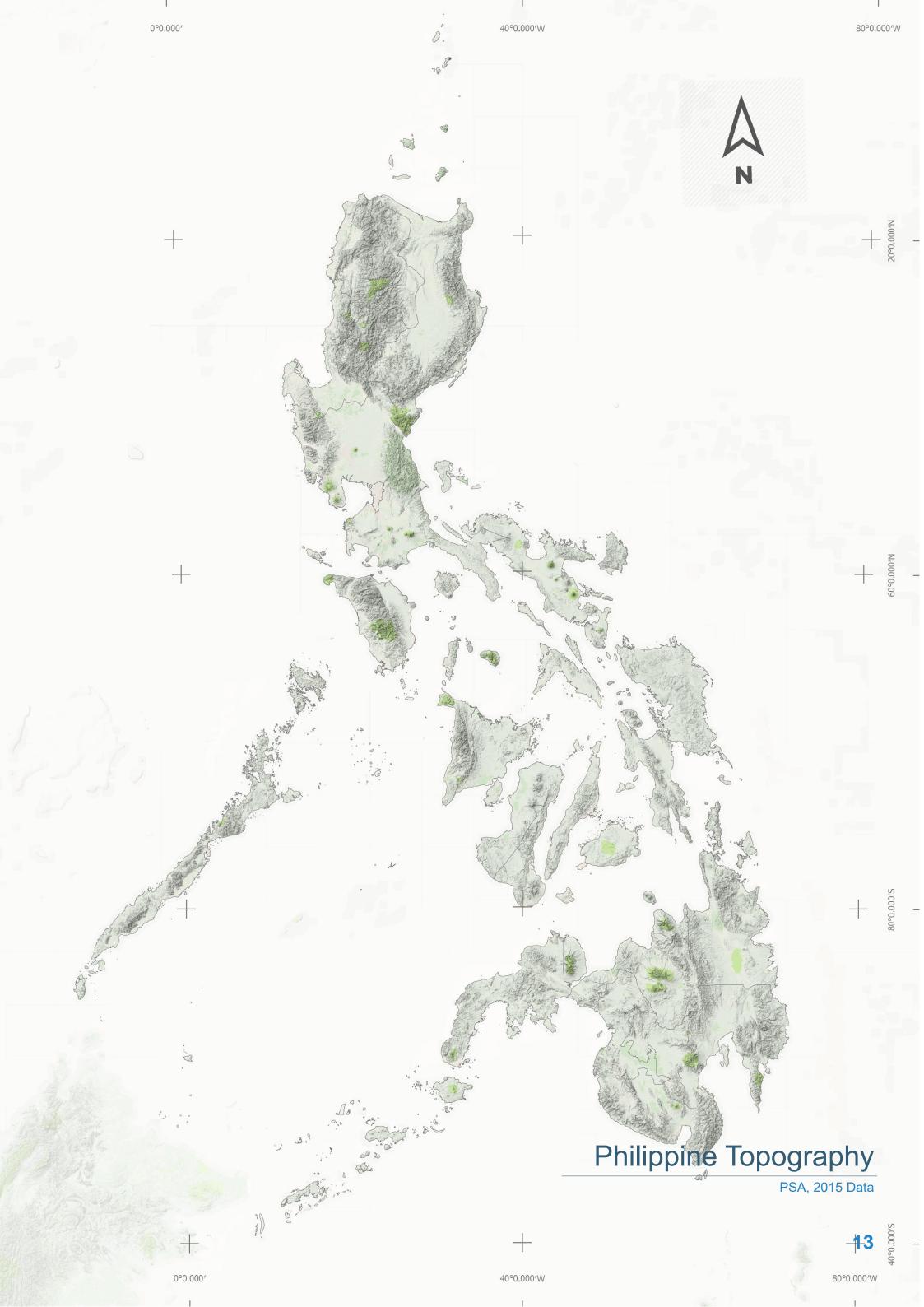
Philippine soils have considerable depth even on relatively steep slopes due to the rapid chemical weathering and the slow physical weathering of rocks. Due to rapid chemical decomposition, however, organic matter in the Philippines is very small and there is very little humus in tropical soil – even when plant material in the tropical forest is about two to three times more than that in the temperate forest.

Carbon dioxide and organic acids provided by this plant material through decomposition attack the rocks and account for the rapid chemical weathering of same.

Subsurface – wise, the Philippine Archipelago could be, as the basic conception, considered as wedges caught between sets of two oppositely dipping subduction zones, where the ocean submarine floor under thrusts beneath the continental or island massif. This situation can be observed in the north and central Luzon (wedged between the Manila Trench and the east Luzon Trench), in the Visayan Shelf (between the Sulu-Negros Trench and the Philippine Trench), and in the Mindanao island (between the Cotabato Trench and the Philippine Trench).

The alignment of these trenches, especially of the two major trenches, the Philippine Trench and the East Luzon Trench trending toward north-northwest to north, characterizes the Philippine Archipelago as a zonal structure with several wide belts connecting island to island arch wise in the same trend with trenches.

The archipelago consists essentially of two separable and distinct structural units – a mobile belt and a stable region. The mobile belt covers almost all the archipelago and is characterized by the concentration of earthquake epicenters, numerous active and inactive volcanoes and deeply sheared zone forming narrow canyons, intermontane basins and straits. The stable region, the


Lying on the northwestern fringes of the Pacific Ring of Fire, the Philippines also experiences frequent seismic and volcanic activities. The country has many active volcanoes such as Mayon, Mount Pinatubo, and Taal.

80°0.000'E

southwestern part of the archipelago which embraces mainly Palawan and Sulu Sea, is essentially aseismic and shows the virtual absence of Tertiary igneous activity.

120°0.000'E

40°0.000'E

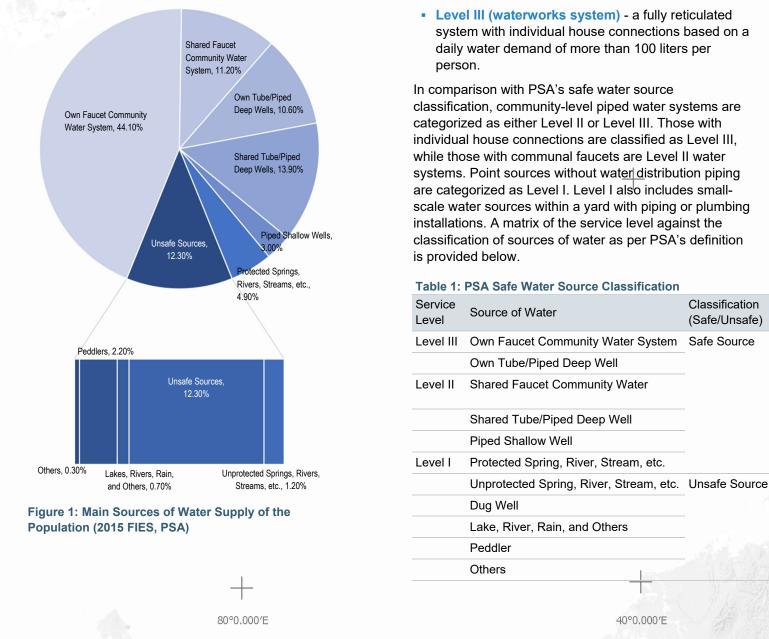


# **WSS Sector**

Access to water supply and sanitation (WSS) facilities is not only a basic human need but is a human right.

# Access to Safe Water

## Safe Water Source


Safe water supply refers to water accessed by the population from (i) a community water system that is piped into dwellings and/or yards/plots through a public tap and (ii) protected wells. This is based on the definition used by the Philippine Statistics Authority (PSA) in the following surveys and reports:

- Annual Poverty Incidence Survey (APIS), and
- Family Income and Expenditure Survey (FIES).

## About 87.68% of the population in 2015 was reported to be getting water from sources that can be classified as safe sources.<sup>3</sup>

The main sources of water of 12.32% of the Philippine population, however, cannot be classified as safe because these include dug wells, unprotected spring, rivers, streams and lakes, rain, peddled water, and others.

With respect to the 17 regions, the main source of water of more than half of ARMM's population is classified as unsafe. Likewise, the main source of water of more than a million of the population in five regions is categorized as unsafe. These regions are Western Visayas, ARMM, Bicol Region, CALABARZON, and Central Visayas.



### Trend

Data from APIS and FIES for 2004 and 2015 show an improvement in access to safe water supply - from 80.1% in 2004 to 87.7% in 2015.

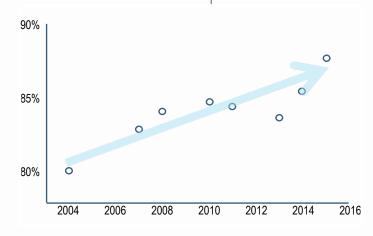
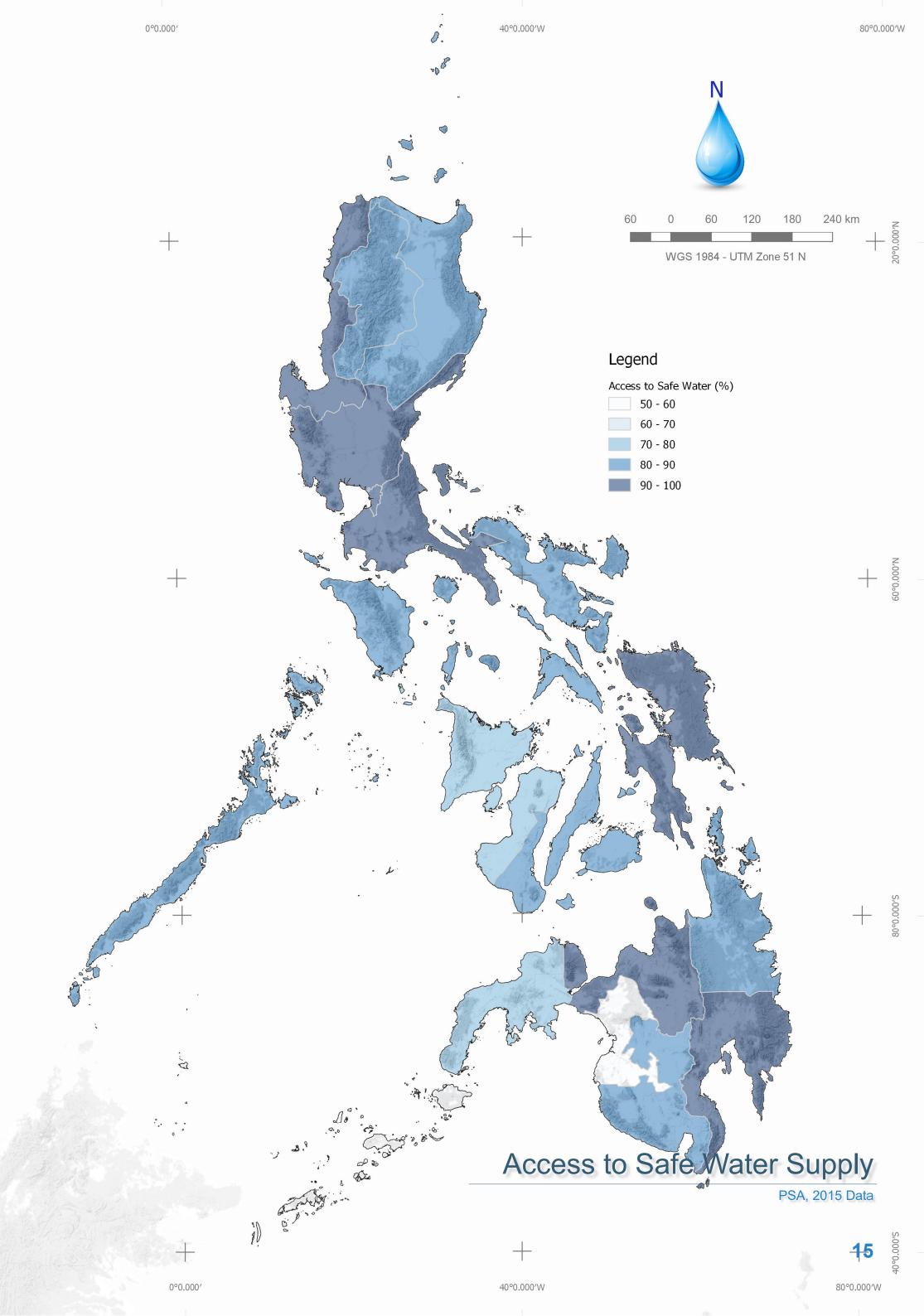


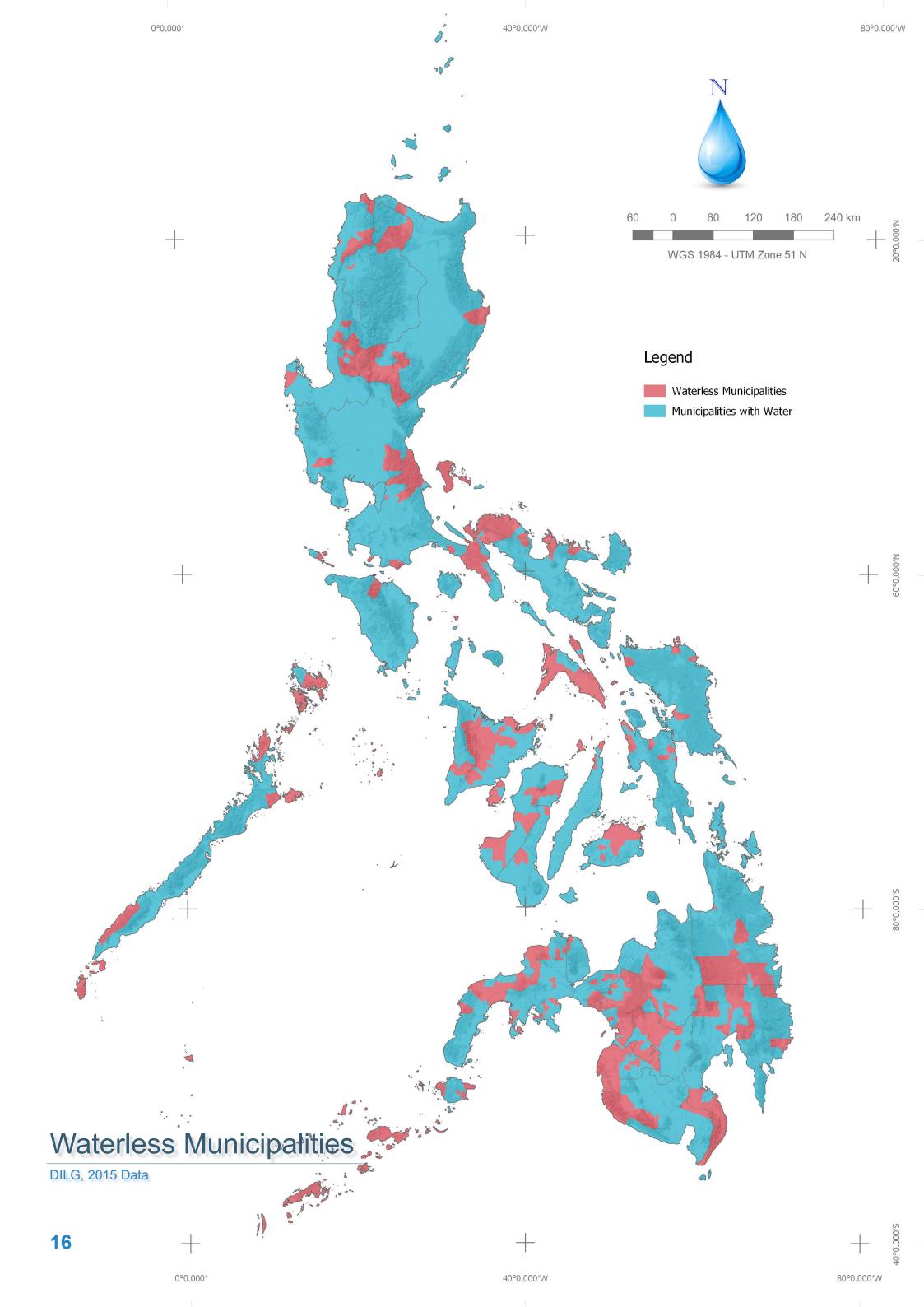

Figure 2: Trend of Access to State Water Supply Data (PSA)

### Service Level

Water supply is usually provided by water service providers. There are households, however, whose main source of water is private - that is, it is not shared with other households or the community, such as private deep wells, and rainwater collectors. The National Economic and Development Authority (NEDA) defines the service levels of water supply in the Philippines as follows:

- Level I (point source) a protected well or a developed spring with an outlet but without a distribution system as it is generally adaptable in rural areas where houses are thinly scattered serving an average of 15 households. (Residents have to fetch water from a source about 250 meters away from where they live.)
- Level II (communal faucet system or stand post) a piped system with communal or public faucets usually serving 4-6 households within a distance of 25 meters.
- Level III (waterworks system) a fully reticulated system with individual house connections based on a daily water demand of more than 100 liters per


In comparison with PSA's safe water source classification, community-level piped water systems are categorized as either Level II or Level III. Those with individual house connections are classified as Level III, while those with communal faucets are Level II water systems. Point sources without water distribution piping are categorized as Level I. Level I also includes smallscale water sources within a yard with piping or plumbing installations. A matrix of the service level against the classification of sources of water as per PSA's definition


Classification

(Safe/Unsafe)

<sup>3</sup> 2015 Family Income and Expenditure Survey, PSA

120°0.000'E





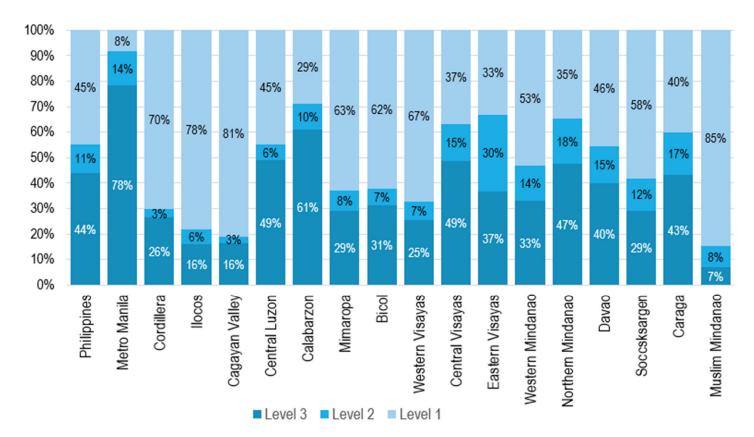



Figure 3: Regional Access to Water Supply

About 43.6% of the Philippine population has access to water from Level III systems, approximately 11.2% from Level II, and the remaining 45.2% from Level I (point source).

Figure 3 shows the regional access to water supply per service level.

### Waterless Municipalities

As of 2017, there were a total of 332 waterless municipalities (from the previous 455) across the country as shown on the map on the left. (Municipalities where less than half of the population has access to clean and safe water are considered "waterless".)

Identified by the National Anti-Poverty Commission (NAPC) in 2011, these 332 waterless municipalities were covered by water supply projects funded by the Sagana at Ligtas na Tubig sa Lahat (Salintubig) Program. The program started in 2012.

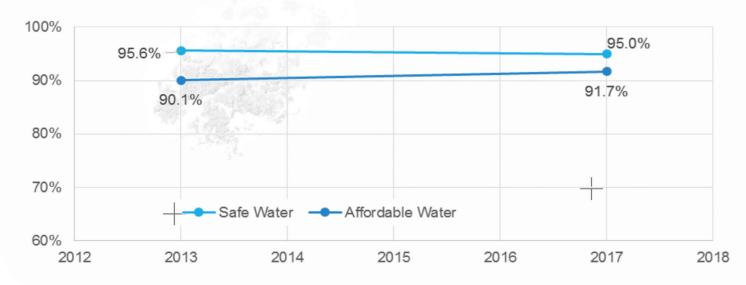
# **Drinking Water**

# Safe and Affordable Drinking Water

Safe and affordable drinking water" is an indicator for Sustainable Development Goals (SDG). SDG 6.1 provides the following normative interpretation of the term:

- Safe free from pathogens and elevated levels of toxic chemicals at all times.
- Affordable not presenting a barrier to access or prevent people from meeting other basic human needs.

In the course of the PWSSMP study, the latest national data available were reported after the PSA conducted the National Demographic and Health Survey (NDHS). In the survey, the respondents were asked about their sources of drinking water and the water treatment done prior to drinking. While the Department of Health (DOH), Local Water Utilities Administration (LWUA), and the National Water Resources Board (NWRB) monitor water quality in accordance with the Philippine National Standards for Drinking Water (PNSDW), the parameters involved in the standards are not consistent with those in the NDHS.


The 2013 NDHS groups the sources of drinking water as "improved source" and "non-improved source". It was noted, however, that even water from improved sources might be contaminated from the handling, transport and storage thereof. The survey report also indicated that a certain percentage of samples underwent appropriate treatment methods (i.e., boiling, bleaching, filtering, and solar disinfecting). While there are no national data on the affordability of drinking water, the NDHS includes time spent to obtain water.

A proxy value may be derived using the following assumptions (see Figure 4):

- Bottled water is considered safe (as defined above) and does not need any treatment.
- Respondents who drink bottled water need not worry about water treatment.
- An appropriate treatment method is sufficient to make water safe for drinking (as defined above).
- The percentage of respondents resorting to appropriate treatment methods represent the number of respondents who do not drink bottled water.
- Water for drinking or household use obtained within the premises or within less than 30 minutes to is considered affordable.
- Drinking water water used for drinking, cooking, food preparation and personal hygiene.

| safe drinking water         |                                                                         |                                                                            | In premises                                                            |                  |                                                                    |                                                                        |
|-----------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|
| bottled<br>water            | water from im-<br>proved sources<br>with appropriate<br>water treatment | water from non-<br>improved sources<br>with appropriate<br>water treatment | Less than 30 minutes<br>fetching time and back<br>30 minutes or longer |                  |                                                                    | nking water                                                            |
|                             |                                                                         |                                                                            | fetching time and back                                                 |                  |                                                                    |                                                                        |
| water from improved sources |                                                                         | water from non-<br>improved sources                                        |                                                                        | bottled<br>water | water from improved<br>sources with appropriate<br>water treatment | water from non-improved<br>sources with appropriate<br>water treatment |

Figure 4: Standards for Safe and Affordable Drinking Water



#### Figure 5: Access to Safe and Affordable Drinking Water, NDHS

Figure 5 plots the 'safe and affordable drinking water' data accordingly.

#### **National Data**

The national data on drinking water can be found in the NDHS which is done every five years. The two latest surveys were conducted in 2013 and 2017. The field survey in regard to the 2017 NDHS was conducted during the second half of 2017 and covered a national sample of over 31,000 households.

# The 2017 NDHS reports that 95% of households use an improved source of drinking water.

Almost all urban households (HH's) (97.6%) report using an improved source of drinking water compared with 93% of rural households. The percentage of households using an improved drinking water source is unchanged relative to the NDHS 2013 findings at 95.6%.

The most common source of drinking water is bottled water or water from a refilling station (44%) followed by water piped water into the dwelling, yard or plot (24%), and by water from a tube well or borehole (12%).

Overall, eight in every ten Filipino households have water on the premises. 16% of households travel less than 30 minutes or longer to fetch water and 3% travel 30 minutes or longer. Most households (79%) report that they do not treat their water prior to drinking.

### **JMP** Data

The WHO/UNICEF Joint Monitoring Programme (JMP) also monitors global progress of drinking water, sanitation, and hygiene (WASH). JMP uses the respective country's dataset (i.e., censuses, household surveys, administrative data) as well as other datasets that may be available such as compilations by international or regional initiatives, studies conducted by research institutes, or technical advice received during country consultations. Where there are missing data or if data is not available for specific years, estimates are being done accordingly.

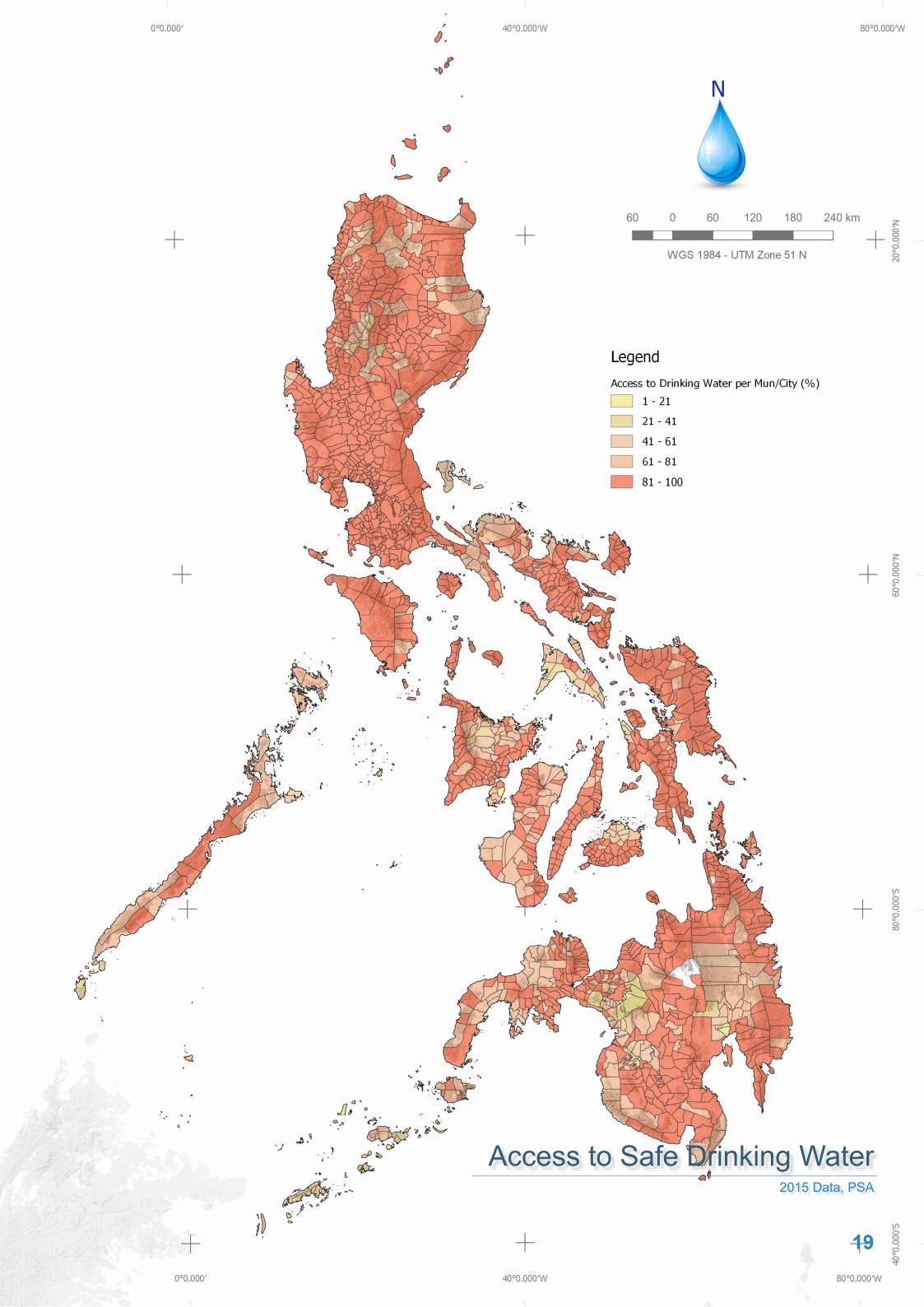
### Based on the JMP database, the Philippines' access to

### PSA 2015 Census Data

While the population data up to the barangay level based on the 2015 Census are readily available in the PSA website, data on the sources of drinking water (at the city and municipal levels) have only been made available recently. Said data are based on the agency's most recent census.

The classification of sources for drinking water is the same as that of the sources of safe water used in the PSA FIES 2015 (see Figure 1), with the addition of bottled water sources.

As of 2015, 91% of Filipinos had access to safe drinking water sources. The map on the right shows the percentage of access to safe drinking water per municipality as of 2015.


60°0.000'N

80°0,000'S

safe drinking water is at 90.50% as of 2015 (rural HH's at 85.82%, urban HH's at 96.37%). The figures are derived from the regression analysis conducted using Philippine water data found in various sources including the Philippine census, APIS, NDHS, FIES.







# Sanitation is essential providing a healthy living environment in households and across communities.

# Access to Sanitation

Sanitation service has three (3) data attributes – facility, usage, and management.

- Facility refers to the structure or infrastructure that facilitates the delivery of sanitation service.
- Usage refers to the availability of the facility for use among households.
- Management refers to the proper disposal of excreta (i.e., in situ or transported and treated offsite).

Service levels are based on SDG definitions. These are as follows:

- Safely Managed using of improved facilities which are not shared with other households and where excreta are safely disposed of in situ or transported and treated off-site.
- **Basic** using of improved facilities which are not shared with other households.
- Limited using of improved facilities shared between two or more households.
- Unimproved using of pit latrines without a slab or platform, hanging latrines or bucket latrines.
- Open Defecation disposal of human feces in fields, forests, bushes, open bodies of water, beaches and other open spaces or with solid waste.
- Improved facilities include: flush/pour flush to piped sewer system, septic tanks or pit latrines; ventilated improved pit latrines, composting toilets or pit latrines with slabs.

Table 2 tabulates the service ladder of sanitation against its three (3) data attributes.

# **Basic Sanitation**

Basic sanitation refers to the level of service where the sanitation facility is private (not shared with other households) and where the excreta is separated from human contact (i.e., using toilet fixtures) but where the excreta is either safely managed or not (i.e., with or without a septic tank). The PSA has provided data on basic sanitation specifically in the following surveys and reports:

- Annual Poverty Incidence Survey (APIS) Part of the survey determines the type of toilet facility a family is using (i.e., own toilet, shared toilet, closed pit, open pit, etc.).
- Family Income and Expenditure Survey (FIES) The 2015 FIES includes the number of families with access to electricity, amain source of water supply, and toilet facilities by income decile.
- National Demographic and Health Survey (NDHS)
- Philippine Census

Data on access to basic sanitation from 2004 to 2015 from available sources show an improvement in access to basic sanitation — from 68.9% in 2004 to 73.8% in 2015 (see Figure 6).

## Adequate and Sustainable Sanitation

The SDG provides a normative interpretation of sanitation as a provision of facilities and services for safe management and disposal of human urine and feces. This is equivalent to the Safely Managed Sanitation service level (as defined earlier). Other SDG 6.2 targets include:

- Access;
- Adequate sanitation;
- Equitable sanitation;
- Hygiene;
- End of open defecation;
- Attention to the needs of women and girls; and
- In vulnerable situation.

All these, however, will be achieved once 100% of the population has obtained access to safely managed sanitation.

The table below provides a matrix of the types of sanitation facilities (as gathered in the NDHS) against sanitation service levels.

#### Table 2: Sanitation Service Ladder

|             |                    | Service Ladder                                                      |                                                                  |                                                    |                                                                     |
|-------------|--------------------|---------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
|             | No Service         | Unimproved<br>Sanitation                                            | Shared Sanitation                                                | Basic<br>Sanitation                                | Safely Managed<br>Sanitation                                        |
| Description | Open<br>Defecation | Unimproved<br>facility does not<br>protect against<br>contamination | Improved facility<br>that is shared by<br>multiple<br>households | Private<br>improved<br>facility which<br>separates | Private<br>improved facility<br>where excreta is<br>safely disposed |

excreta from of on site or human contact transported and treated off-site.

| Attributes | With toilet/ latrine<br>facility                                                                          | No  | Yes                     | Yes    | Yes                     | Yes                     |
|------------|-----------------------------------------------------------------------------------------------------------|-----|-------------------------|--------|-------------------------|-------------------------|
|            | Usage<br>(private/ shared)                                                                                | N/A | Maybe private or shared | Shared | Private (not<br>shared) | Private (not<br>shared) |
|            | Management<br>(Excreta is safely<br>disposed of in situ<br>or is transported<br>and treated off-<br>site) | N/A | No                      | Maybe  | Maybe                   | Yes                     |

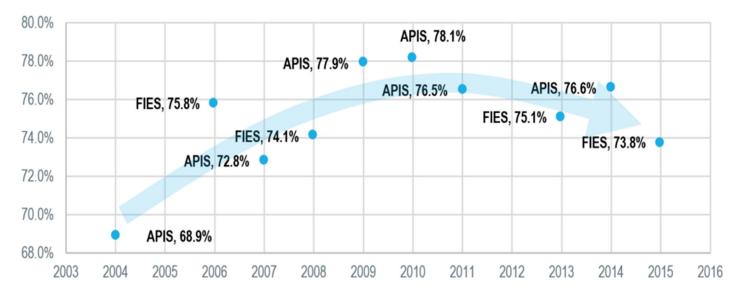



Figure 6: Trend of Access to Basic Sanitation Data

Unlike basic sanitation, safely managed sanitation requires proper management of excreta (i.e., disposal in situ or transported and treated off-site). Proper management may through:

- Through use of septic tanks for disposal in situ;
- Through septage management a comprehensive program for managing septic tanks and the procedure for desludging, transporting, treating, and disposing of septic tank contents; and
- Through sewerage management a network of pipes, pumps, and force mains for the conveyance and collection of wastewater and sewage from a community.

Data on safely managed sanitation are available in the NDHS. Included in NDHS housing characteristics are the sanitation facilities of respondents as well as the management of excreta (i.e., to piped sewer system, to septic tank) (see data parameters used in Table 3). It is recommended, however, that PSA align its reporting with the SDGs.) The methods used by PSA and JMP regarding their reports on national sanitation coverage do not differ significantly. With the alignment of the PSA figures with the SDGs, the table below shows the percentage per service level reported by the aforementioned entities.

#### Table 4: Percentage per Service Levels by PSA and JMP

| Service Levels/<br>Source of Reporting | Philippine<br>Statistics<br>Authority | Joint Monitoring<br>Programme |
|----------------------------------------|---------------------------------------|-------------------------------|
| Improved Access                        | 73.77%                                | 74.98%                        |
| Limited Access/Basic                   | 19.96%                                | 16.54%                        |
| Unimproved Access                      | 2.04%                                 | 2.74%                         |
| Open Defecation                        | 4.23%                                 | 5.74%                         |

#### Table 3: Sanitation Facilities by NDHS

|                              | -                            |                                       |                              |
|------------------------------|------------------------------|---------------------------------------|------------------------------|
|                              | NDHS Type of Toilet/Latrine  | Sanitation Service Level              |                              |
| Improved not shared facility | Flush/pour flush             | to piped sewer system                 | Safely Managed Sanitation    |
|                              |                              | to septic tank                        | Safely Managed Sanitation    |
|                              |                              | to pit latrine                        | Basic Sanitation             |
|                              | Ventilated improved pit (V   | (IP) latrine                          | Unimproved Sanitation        |
|                              | Pit latrine with slab        |                                       | Unimproved Sanitation        |
|                              | Composting toilet            |                                       | Unimproved Sanitation        |
| Shared facility              | Flush/pour flush             | to piped sewer system                 | Shared Sanitation            |
|                              |                              | to piped sewer system                 | Shared Sanitation            |
|                              |                              | to pit latrine                        | Shared Sanitation            |
|                              | Ventilated improved pit (V   | /IP) latrine                          | Unimproved Sanitation        |
|                              | Pit latrine with slab        |                                       | Unimproved Sanitation        |
| Non-improved facility        | Flush/pour flush             | not to sewer/septic tank/ pit latrine | Unimproved Sanitation        |
|                              | Pit latrine without slab/ op | en pit                                | Unimproved Sanitation        |
|                              | Bucket                       |                                       | Unimproved Sanitation        |
|                              | Hanging toilet/ hanging la   | trine                                 | Unimproved Sanitation        |
|                              | No facility/bush/field       |                                       | No Service (Open Defecation) |
|                              |                              |                                       |                              |

# About 74% of the population had access to improved sanitation.

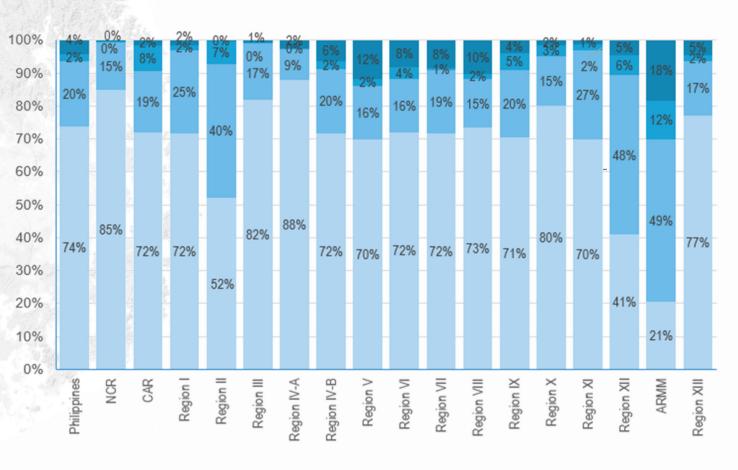
Data on sanitation access down to the regional level are also available from PSA as shown in Figure 7.

ARMM significantly differs from the other regions when it comes to access to sanitation. It has the lowest percentage of population with access to improved sanitation at 21% and the highest percentage of open defecation without access) at 18%. Moreover, the Bicol Region is second at 12% without access to sanitation.

CALABARZON (88%) recorded the highest access to improved sanitation in 2015, followed by the NCR (85%), Central Luzon (82%), Northern Mindanao Region (80%), and Caraga Region (77%). These were all above the national average of 73.77%, the rest of the regions following behind and below the national average.

A thematic comparison of the access to basic and improved sanitation of all the regions is shown on the map on the right.

# Septage Management System and Sewerage System


Septage management and sewerage systems are built to manage excreta at the community level.

Data on LGUs with developed septage management systems and HUCs with developed sewerage systems are collected from various projects and LGUs, and detailed in Chapter 5.

# Septage Treatment Facilities and Sewerage Treatment Facilities

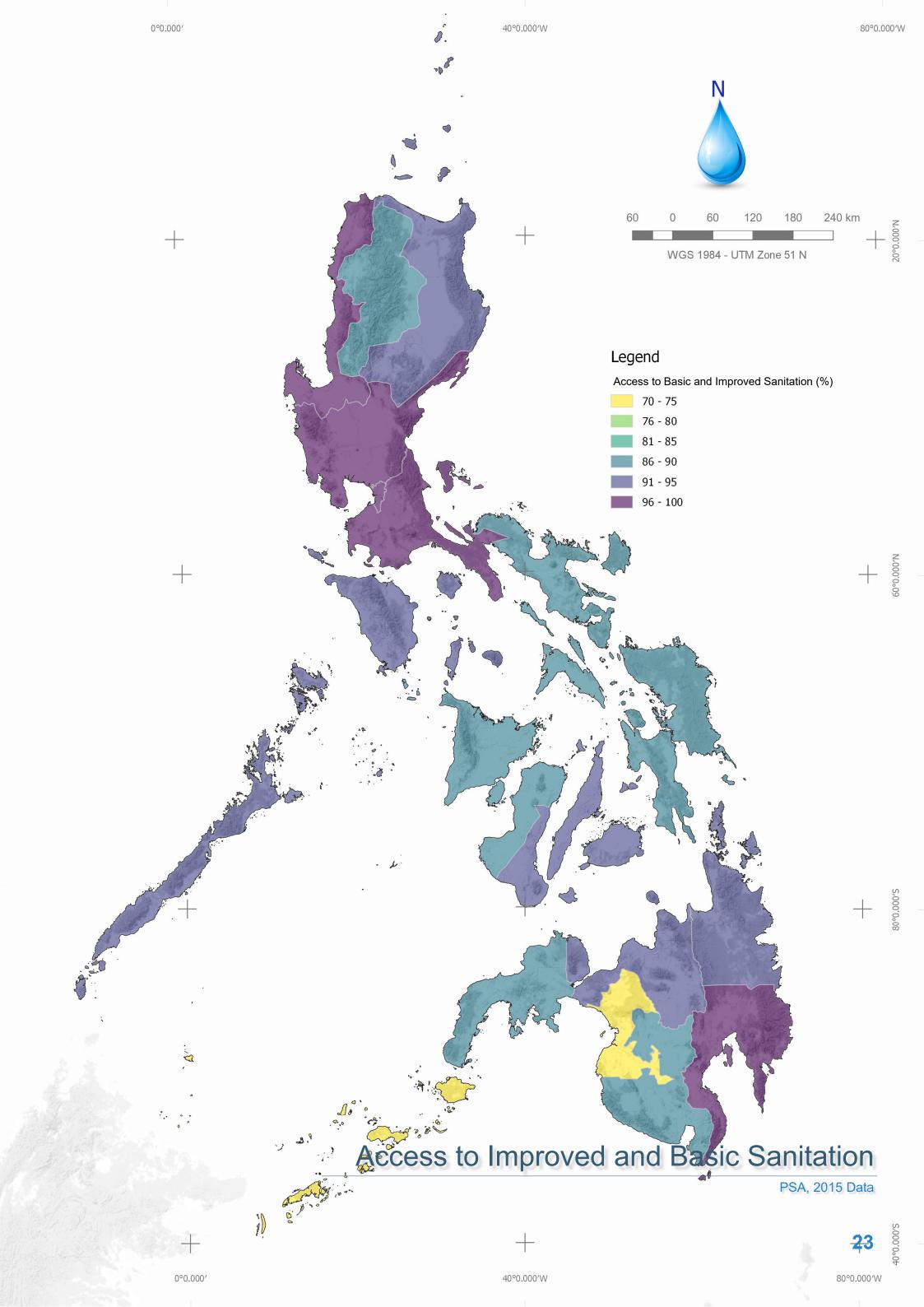
Septage treatment facilities and sewerage treatment facilities are part of the septage management system and sewerage system, respectively, which are also directly linked to sanitation access.

Data on access to septage treatment facilities and sewerage treatment facilities are also discussed in Chapter 5. This is part of the national master plan and the regional roadmaps.



Improved Sanitation (Safely Managed) Basic Sanitation Unimproved Sanitation Open Defecation

Figure 7: Regional Access to Sanitation


20°0.000'N





+





80°0.000'E

# Water Resources

# The country <u>is</u> divided into 12 water resources regions (WRR).

Regionalization considered the hydrological boundaries defined by physiographic features and homogeneity in climate. The division (see map on the right) also caters to the purpose of comprehensive planning of water resources development. These water resources regions include:

- Ilocos (WRR 1),
- Cagayan Valley (WRR 2),
- Central Luzon (WRR 3),
- Southern Tagalog (WRR 4),
- Bicol (WRR 5),
- Western Visayas (WRR 6),
- Central Visayas (WRR 7),
- Eastern Visayas (WRR 8),
- Southwestern Mindanao (WRR 9),
- Northern Mindanao (WRR 10),
- Southeastern Mindanao (WRR 11), and
- Southern Mindanao (WRR 12).

# Water Bodies

The Philippines is endowed with abundant water resources and bodies. These include inland freshwater (rivers, lakes, and groundwater), and marine bodies of water (bays, and coastal and oceanic waters).

### Lakes and Swamps

The country has 79 natural lakes. The largest is the Laguna de Bay with an area of 922 km<sup>2</sup> and encompassing two regions – Metro Manila and Region IV.

Lakes in the country are generally used for aquaculture, while others are used for hydropower generation. A list of ten of the country's lakes that host aquaculture production is shown in the table below:

**Table 5: Major Hosts for Aquaculture Production** 

| Name of Lake  | Location                                | Area (km <sup>2</sup> ) |
|---------------|-----------------------------------------|-------------------------|
|               |                                         |                         |
| Laguna de Bay | Laguna and Rizal                        | 900                     |
| Lanao         | Lanao del Sur                           | 347                     |
| Taal          | Batangas                                | 234                     |
| Mainit        | Agusan del Norte &<br>Surigao del Norte | 140                     |
| Naujan        | Oriental Mindoro                        | 110                     |
| Buluan        | Sultan Kudarat &<br>Maguindanao         | 65                      |
| Bato          | Camarines Sur                           | 38                      |
| Buhi          | Camarines Sur                           | 18                      |
| Dapao         | Lanao del Sur                           | 10                      |
| Sebu          | South Cotabato                          | 9.64                    |
| Total         |                                         | 1,871.64                |

80°0.000'E

In addition to that, the country  $\overline{\text{also}}$  has more than 1,000 km<sup>2</sup> of freshwater swamps.

The National Wetland Action Plan (2011 – 2016), in response to the country's commitments to the Ramsar Convention, nominated and designated four major wetlands, with a total surface area of 684 km<sup>2</sup>, as sites for Wetlands of International Importance. These include the Olango Island (Cebu), Naujan Lake National Park (Oriental Mindoro), Agusan Marsh Wildlife Sanctuary (Agusan del Sur), and the Tubbataha Reefs National Marine Park in the middle of Central Sulu Sea.

The Agusan Marsh Wildlife Sanctuary, with an area of 148 km<sup>2</sup>, is of particular importance because it includes a vast complex of freshwater marshes and watercourses with numerous shallow lakes and ponds in the upper basin of the Agusan River and its tributaries rising in the hills of eastern Mindanao.

#### **Bays and Coastal Waters**

Being an archipelago, the country's bays and coastal waters cover an area of 266,000 km<sup>2</sup>. Oceanic waters, on the other hand, cover 1,934,000 km<sup>2</sup>.

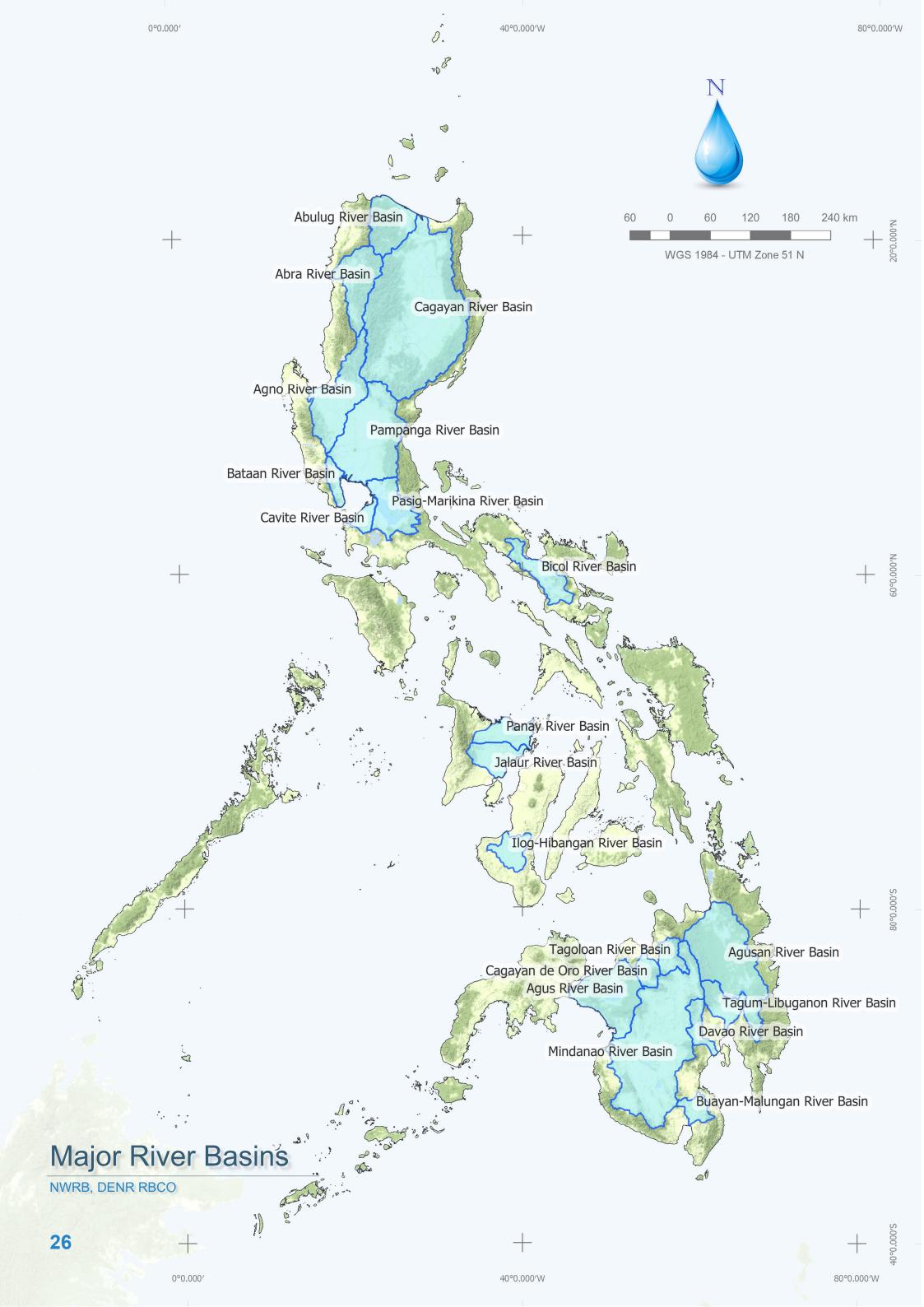
The Philippine coastline, having a total length of 36,289 km., is irregular, with numerous bays, gulfs, and islets. About 60% of Philippine municipalities and cities are coastal, with ten of the largest cities located along the coast.

### **Rivers and River Basins**

The Philippines has about 421 river basins, not counting small mountain streams, that sometimes can swell to three times their size during rainy months. Aside from being a valuable and primary source of irrigation water for fields and farms through which they pass, these rivers are now greatly considered as a viable and more sustainable source of water supply especially for urban areas where water demand is high and continuously increasing; while groundwater sources are slowly dwindling down and could not keep up.

Of the 421 principal river basins, 18 are considered major river basins with each having a drainage area of more than 1,400 km<sup>2</sup>. The 18 major river basins occupy a total of 108,923 km<sup>2</sup> which is more than one-third of the country's total land area.


The largest river basin is the Cagayan River Basin which encompasses the CAR and Region II and the province of Aurora in Region III. It is utilized for hydroelectric power as several dams/ power plants are built within its proximity. The second largest river basin is Mindanao which encompasses Regions X, XII, and ARMM.


50°0.000'N

The locations of the major river basins are shown in the map on the next page.









#### **Table 6: Major River Basins**

| River Basin         | Catchment Area (km <sup>2</sup> ) | River Length<br>(km) |
|---------------------|-----------------------------------|----------------------|
| Cagayan             | 25,649                            | 505                  |
| Mindanao            | 23,169                            | 373                  |
| Agusan              | 10,921                            | 350                  |
| Pampanga            | 9,759                             | 260                  |
| Agno                | 5,952                             | 206                  |
| Abra                | 5,125                             | 178                  |
| Pasig-Laguna de Bay | 4,678                             | 78                   |
| Bicol               | 3,771                             | 136                  |
| Abulug              | 3,372                             | 175                  |
| Tagum-Libuganon     | 3,064                             | 89                   |
| llog-Hilabangan     | 1,945                             | 124                  |
| Panay               | 1,843                             | 132                  |
| Agus                | 1,890                             | 36                   |
| Tagoloan            | 1,704                             | 106                  |
| Davao               | 1,623                             | 150                  |
| Cagayan de Oro      | 1,521                             | 90                   |
| Jalaur              | 1,503                             | 123                  |
| Buayan-Malungon     | 1,434                             | 60                   |
| Total               | 108,923                           | 3,171                |

# Estimating the Country's Water Resources Potential

Recent data on the availability of water resources in the Philippines on a national scale (down to the regional and provincial levels) are limited. The PWSMMP employed secondary data from previous studies and available hydro-meteorological and hydrogeological data collected from different sources to estimate water resources potential. (These data are based on references tabulated below.)

Available data were also updated using applicable methods based on the most recent precipitation data, and surface and land areas. The water resources potential up to the provincial level was also approximated, as some data pertained only to each river basin or WRR.

### **Surface Water Potential**

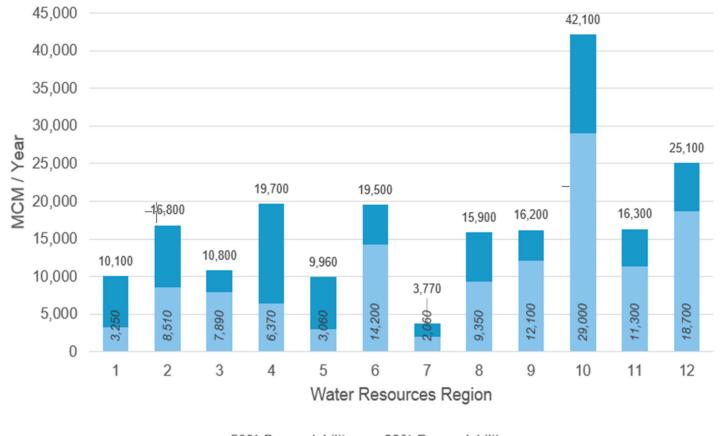
Hydrology is the study of the cycling of water through different reservoirs. It focuses on the distribution of water in the subsurface, surface and atmosphere, the chemistry of that water, and the effects of climate on the water cycle. Hydrology subdivides into surface water hydrology, groundwater hydrology (hydrogeology), and marine hydrology. For the purpose of this report, the study of surface waters will be referred to as "hydrology", while the study of groundwater will pertain to "hydrogeology".

The estimation of the country's surface water potential was based on hydrological studies and analyses of major river basins (which covered all WRR). Representative flow duration curves (FDCs) for each of the regions of Luzon, Visayas and Mindanao were constructed based on historical streamflow records. This was done by averaging the curves at the stream gauging stations selected.

#### Table 7: Data Availability of Water Resources Potential

| Agency                                                                                                  | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department of                                                                                           | Major River Basin Master Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Environment of<br>Natural Resources<br>River Basin<br>Control Office<br>(DENR RBCO)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Japan International<br>Cooperation<br>Agency (JICA )                                                    | <ul> <li>Master Plan Study on Water<br/>Resources Management in the<br/>Philippines</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NWRB                                                                                                    | <ul> <li>Groundwater Management Plan for<br/>Highly Urbanized Cities and<br/>Surrounding Areas (completed:<br/>Baguio, Angeles, Bacolod, Metro<br/>Manila and Cavite, Cagayan de<br/>Oro, Davao, and Iloilo)</li> <li>Study on Integrated Water<br/>Resources Management for Poverty<br/>Alleviation and Economic<br/>Development in the Pampanga<br/>River Basin</li> <li>Comprehensive Water Resources<br/>Assessment in Major River Basins<br/>(RB) (completed: Pampanga RB,<br/>Agno RB, Panay RB)</li> </ul> |
| National Water<br>Resources Council<br>(NWRC)                                                           | <ul> <li>Provincial Groundwater<br/>Assessment</li> <li>River Basin Water Resources<br/>Assessment</li> <li>Philippine Water Resources</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 |
| Philippine<br>Atmospheric,<br>Geophysical and<br>Astronomical<br>Services<br>Administration<br>(PAGASA) | <ul> <li>Historical rainfall and temperature records</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Department of<br>Public Works and<br>Highways Bureau<br>of Research and<br>Standards (DPWH<br>BRS)      | <ul> <li>Historical streamflow records at<br/>existing gauging stations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Food and<br>Agriculture<br>Organization<br>(FAO) of the<br>United Nations                               | <ul> <li>Aquastat Data</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

The surface water potential for each WRR was estimated for the exceedance probability (or dependability) of 50% and 80% based on resulting FDCs with mean daily discharges per 100 km<sup>2</sup>. Figures show that at 80% dependability, streamflow discharges in Mindanao are about two and three times those for Luzon and Visayas. This implies that the low flow in dry periods in Mindanao is comparatively more stable because of the relatively constant rainfall throughout the year. In Luzon, however, the streamflow is severely affected by the relatively lesser rainfall amount during the dry season<sup>4</sup>.


The total surface water potential of the country is estimated at 206,230 MCM/year and 125,790 MCM/year, at 50% and 80% dependability, respectively.

A Flow Duration Curve (FDC) represents the relationship between the magnitude and frequency of daily, weekly, monthly (or some other time interval of) streamflow for a particular river basin, providing an estimate of the percentage of time a given streamflow was equaled or exceeded over a historical period<sup>5</sup>. It provides a simple, yet comprehensive, graphical view of the overall historical variability associated with streamflow in a river basin. WRR 10 has the largest surface water potential among all the regions comprising around 20% of the country's total. WRR 7, on the other hand, has the least with 2% of the total (see Figure 8). Generally, WRRs in Mindanao have a higher potential than those in Luzon and Visayas. WRRs 9, 10, 11, and 12 make up 57% of the Philippines' total surface water potential, followed by Luzon WRRs (1, 2, 3, 4, 5) with 23% and Visayas WRRs (6, 7, 8) with 20%.

> <sup>4</sup> JICA Water Resources Management Master Plan, 1998

<sup>5</sup> Flow Duration Curves: New Interpretation and Confidence Intervals; Vogel and Fennessey (https://engineering.tufts.edu/cee/people/ vogel/documents/flowDuration1.pdf) 20°0.000'N

+



■ 50% Dependability 80% Dependability

Figure 8: Surface Water Potential per WRR

# **Groundwater Potential**

The country has an extensive groundwater reservoir with an aggregate area of about 50,000 km<sup>2</sup>. It boasts four major groundwater reservoirs with areas ranging from 6,000 to 10,200 km<sup>2</sup>. These are located in Cotabato, Agusan, Central Luzon, and Cagayan (listed in increasing order of covered areas). Groundwater resources are continuously recharged by rain and seepage from rivers and lakes. Groundwater is extensively used for domestic purposes (primarily as drinking water) and irrigation.

The hydrogeological conditions of the country play a big part in groundwater availability. The groundwater conditions are predominantly controlled by geology, topography and the structure of the groundwater basin. The latter consists of distribution and hydrogeological conditions such as the aquifer structure and aquicludes, and is endowed with the physical characteristics of the formations as per transmissibility, and storage coefficient and chemical characteristics of groundwater.

In addition to its hydrogeological conditions, the extent of groundwater availability in any given area depends on its surface area and the amount of precipitation it receives. Using these basic data, the groundwater potential may be estimated.

Recharge is often the most important quantity in a groundwater resource estimation. Possible groundwater recharge is estimated at 5% of the annual precipitation

volume. Results were coupled with the land use patterns of the study areas to further refine calculations.

Urbanization of the study areas is also considered as it reduces the amount of groundwater recharge resulting from the expansion of the land area covered with concrete, asphalt and other non-porous materials, in addition to the water-dependent requirements of human habitation including industrial activities.

Groundwater availability is also tied to groundwater storage which was estimated based on the type and class of aquifers found in a study area (Table 8).

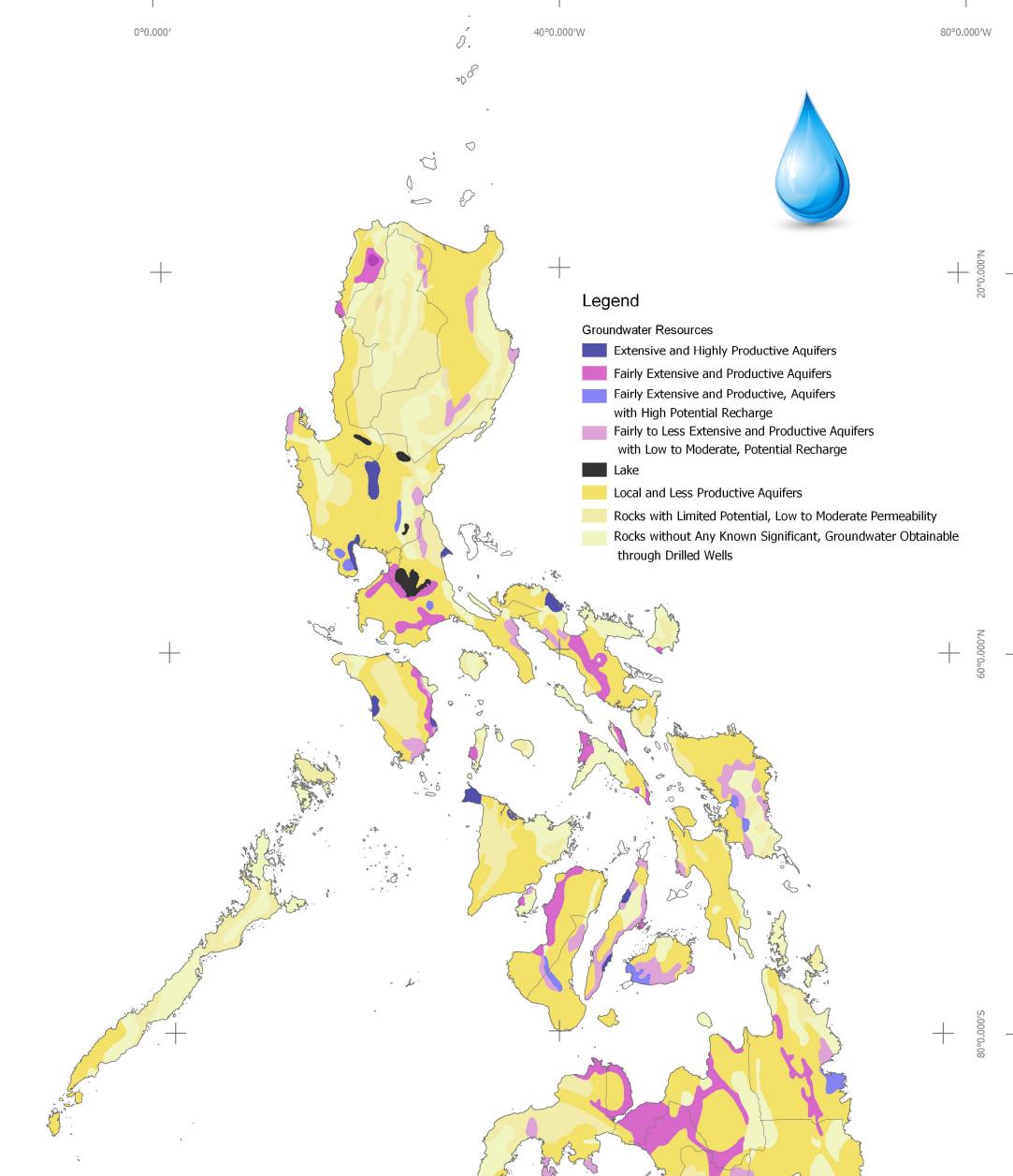
The map on the right shows the groundwater availability map of the Philippines delineated as per the aforementioned types.

## The country's total groundwater potential is estimated at 20,200 million cubic meters (MCM)/year.

Potential per WRR is shown in Figure 9. WRR 2 has the largest groundwater potential comprising 14% (2,825 MCM/year) of the country's total, while WRR 7 has the least potential with 4% (879 MCM/year).

60°0.000'h

| Aquifer Class                       | MGB Aquifer Type                                                                                                                        | Estimated Yields (boreholes unless stated)                                      |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Major Aquifer<br>(Highly permeable) | Intergranular: extensive and highly productive<br>Fractured: fairly extensive and productive (aquifers<br>with high potential recharge) | Mostly 50-100 liters per second (lps)<br>3-50 lps, spring yields up to 1000 lps |
| Minor Aquifer                       | Intergranular: fairly extensive and productive                                                                                          | About 20 lps                                                                    |
| (Variably permeable)                | Intergranular: local and less productive                                                                                                | Mostly 2-20 lps                                                                 |
|                                     | Fractured: less extensive and productive                                                                                                | Well yields up to 3 lps                                                         |
| Non-aquifer                         | Rocks with limited groundwater potential                                                                                                | Yields mostly less than 1 lps                                                   |
| (Negligibly permeable)              | Rocks without any significant known groundwater                                                                                         | Yields mostly less than 1 lps                                                   |
|                                     |                                                                                                                                         |                                                                                 |


80°0.000'E

Source: MGB



120°0.000'E

40°0.000'E





Mines and Geosciences Bureau (MGB)

40°0.000'S

80°0.000′W

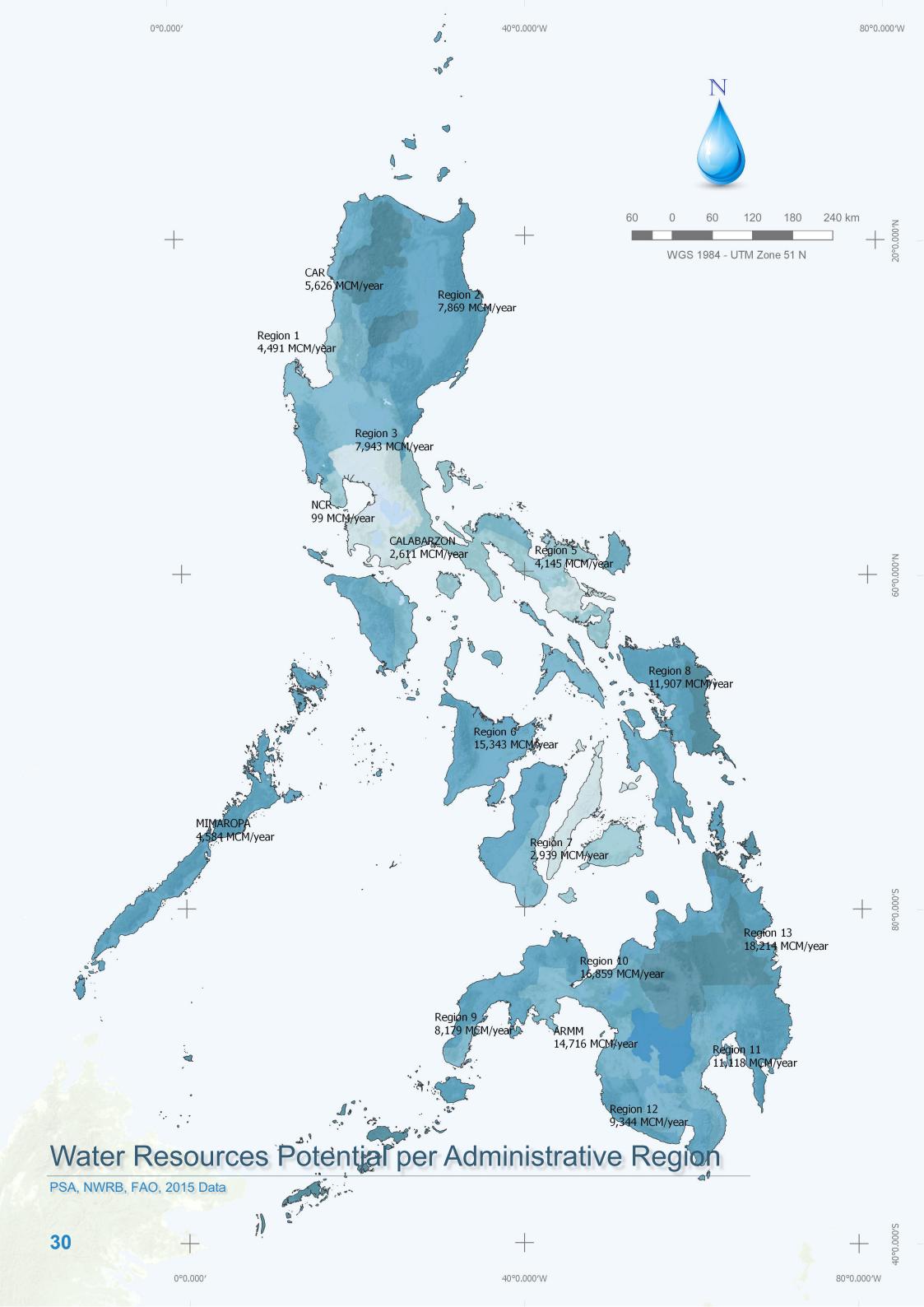
29

0°0.000′

+

and the way

Sie .


+

40°0.000'W

2

• • •

·°..



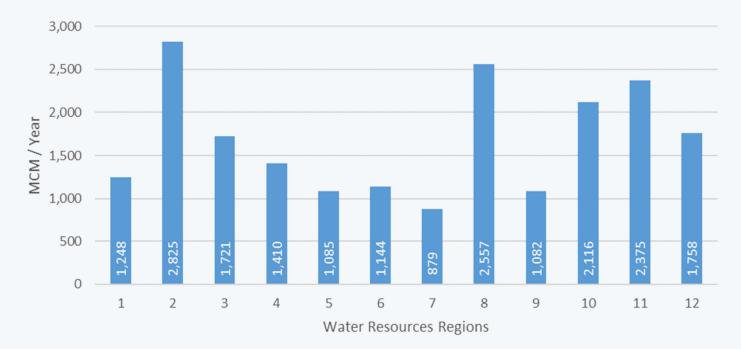



Figure 9: Groundwater Potential per Water Resources Region (in MCM/Year)

Considering the total surface water potential of 125,790 MCM/year (taken at 80% dependability) and the total groundwater potential of 20,200 MCM/year, the Philippines has a total water resources potential of 145,990 MCM/year.

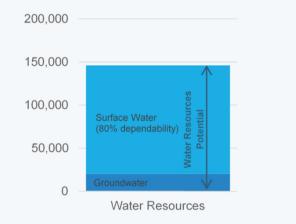
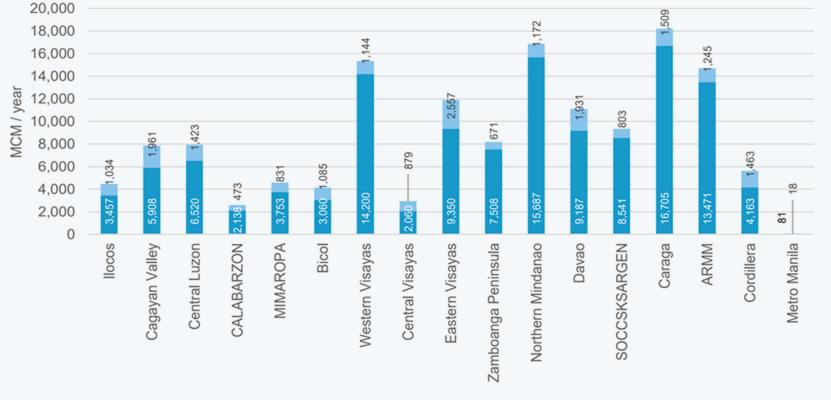



Figure 10: Total Water Resources Potential of the Philippines


Translating these from a per-WRR basis to a peradministrative region basis gives us the corresponding water resources potential (as shown in Figure 11).

The Caraga Region has the greatest water resources potential out of all administrative regions, taking up around 12.5% (around 18,000 MCM/year) of the country's total. Being the most urbanized region, Metro Manila has the lowest potential with less than 0.5% of the total (98 MCM/year).

# Water Use

As the water resource regulator, NWRB grants water rights of a water resource before applicants utilize a water source. Granted water rights data are stored in NWRB's database with respect to the purpose of water use, quantity of water, etc.

The NWRB's database is the only source of information on the state of use of water resources on a nationwide scale. The propriety of each water right application is evaluated by the NWRB based on registered data on available water sources and the standard criterion for each water use sector.



Surface Water, at 80% Dependability Groundwater

#### Figure 11: Total Water Resources Potential per Administrative Region

Source: Japan International Cooperation Agency (JICA) Master Plan on Water Resources Management in the Philippines, 1998; NWRB; Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) Rainfall Data; Food and Agriculture Organization (FAO) of the United Nations Aquastat Data; Department of Environment and Natural Resources (DENR) River Basin Control Office (RBCO) Major River Basin Master Plans

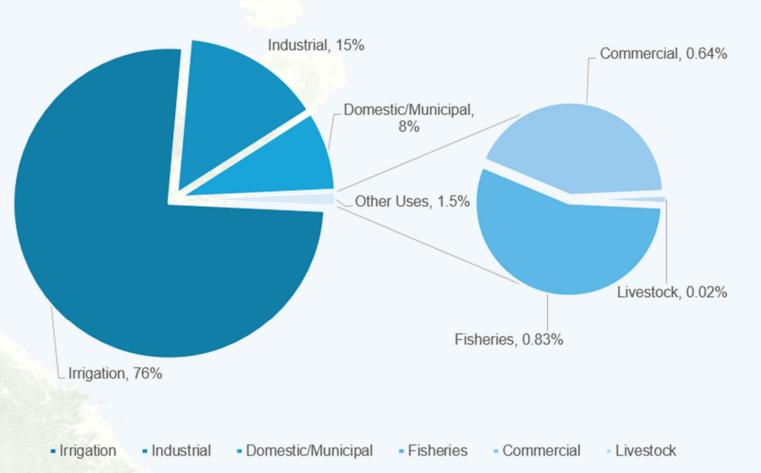



Figure 12 : Water Use per Sector

As of 2017, water use based on awarded water permits was estimated at 212,800 MCM annually. Of this figure, about 130,500 MCM (or 61.3%) was allocated for power generation and was categorized as non-consumptive use, along with recreational use amounting to about 350 MCM. The remaining 82,000 MCM was reserved for consumptive use (Figure 12).

The irrigation sector still consumes the most water among all the sectors with 76% allocation, while domestic consumption was recorded at 8%.

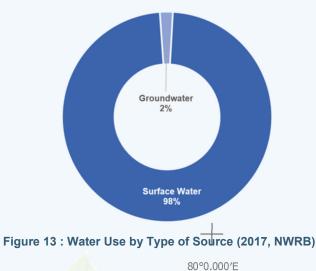
Source-wise, water rights to surface water resources are significantly larger than rights to groundwater as shown in Figure 13.

Groundwater is classified into "wells" and "springs" according to the mode of extraction. It might be advantageous for water rights applicants to develop surface water, if its quantity is sufficient and its quality desirable. Especially in large-scale municipal, industrial and irrigation water supply, development of surface water is preferred to that of groundwater because the latter costs less, is more in demand, and can be sustained for longer periods.

Generally, groundwater is of higher quality (i.e., suitable as drinking water) than surface water and is distributed more widely. This is especially true where only surface water development is possible because of certain topographical disadvantages e.g., an area which has no capacity to allow water supply by gravity flow. In this case, groundwater chiefly sourced from springs could be developed at reasonable costs.

Note, however, that these findings are based on NWRB's database of awarded water permits dating back to 1975. Permits and allocated rights remain valid for as long the "owners" are able to settle their annual fees. Data on the actual and existing water withdrawal of these entities (which may be less or more than what was allotted to them) are lacking (as of this writing). Furthermore, many water users (especially of groundwater) across the country, are also unregistered, resulting in indiscriminate withdrawal.

# Water Availability, Water Stress, and Water Scarcity


"Hydrologists typically assess scarcity by looking at the population-water equation. An area is experiencing water stress when annual water supplies drop below 1,700 m<sup>3</sup> per person. When annual water supplies drop below 1,000 m<sup>3</sup> per person, the population faces water scarcity, and below 500 m<sup>3</sup> 'absolute scarcity." (UN Water, n.d.)<sup>6</sup>

A 2001 study' ranks the Philippines as having the second lowest per capita water availability per year among Southeast Asian countries. The country had been estimated to have 1,907 m<sup>3</sup> per person – lower than the Asia and global averages. While the national value is higher than the threshold of areas considered experiencing water stress or water scarcity, this is not true with respect to each WRR or administrative region.

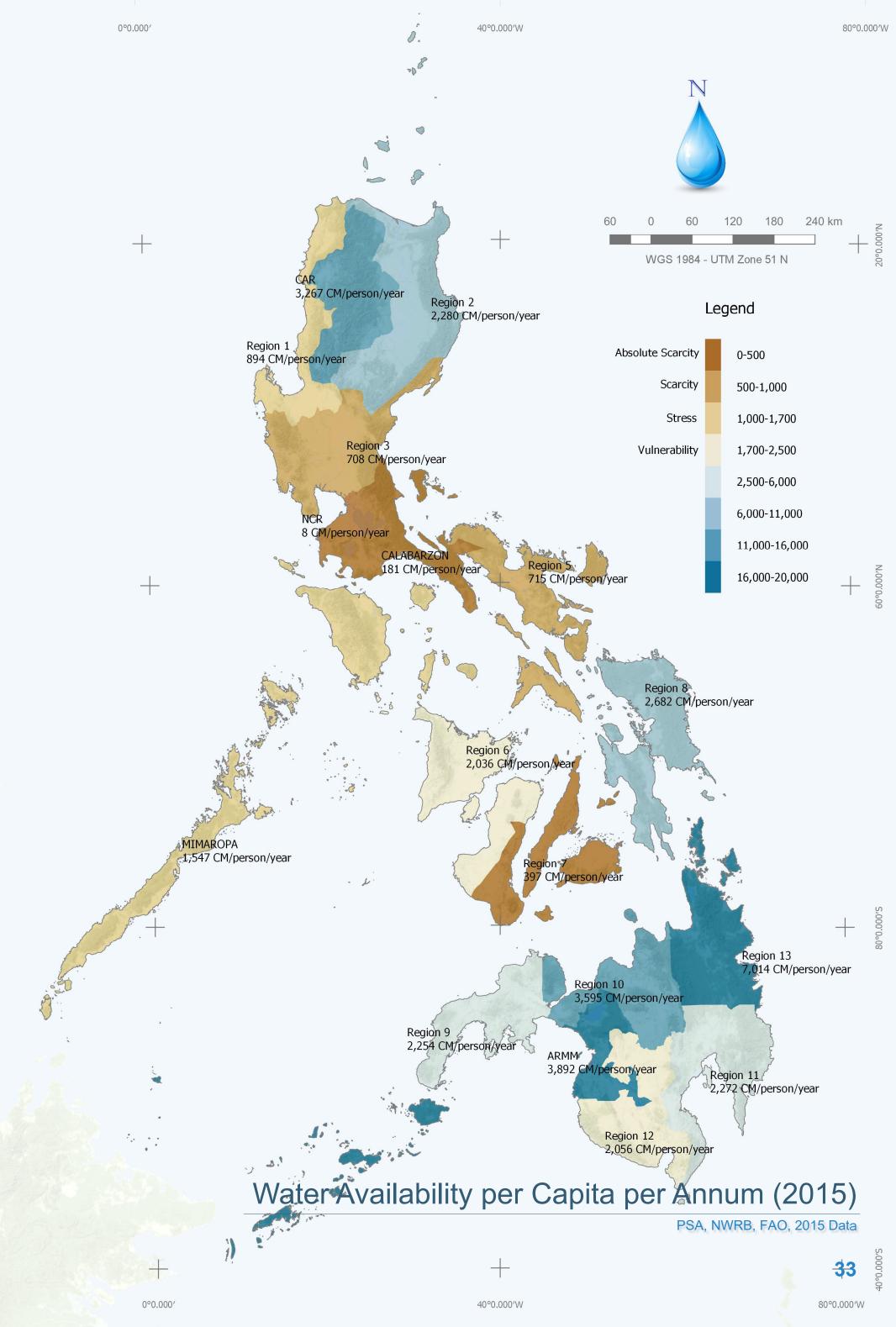
The map on the right shows the per capita water availability per year by region and highlights the level of water availability, stress, and scarcity. Based on 2015 population statistics, water availability in the Philippines is only 1,446 m<sup>3</sup> per capita per year nationwide — a sign that the country is experiencing water stress.

MIMAROPA falls under this condition. Regions I, III, and V are facing water scarcity, and NCR, CALABARZON, and Region VII are facing absolute scarcity. The values for the water availability per capita per year cover domestic water supply and water uses for other sectors (e.g., agricultural, industrial, commercial, power).

In addition, the NWRB has also identified nine watercritical urban areas where water is consumed intensively. These include Metro Manila, Metro Cebu, Davao, Baguio City, Angeles City, Bacolod City, Iloilo City, Cagayan de Oro City, and Zamboanga City.



Future water availability in the country would be further affected by climate change, economic development, urbanization, and population growth. A recent study<sup>8</sup> of the World Resources Institute (WRI) predicts the Philippines will experience a high degree of water shortage in 2040, assuming a business-as-usual scenario continues.


The Philippines is ranked as the 57<sup>th</sup> in the list of 167 countries most likely to experience water stress by 2040. The study evaluated projected water withdrawals by the industrial, domestic, and agricultural sectors against available renewable resources. The three sectors scored high in the projected water stress index, with the agricultural sector having the highest score.

 <sup>6</sup> Managing Water Report under Uncertainty and Risk, UN World Water Development Report 4 (Volume 1)
 <sup>7</sup> World Resources Institute 2000-2001
 <sup>8</sup> Tianyi Luo, R.Y. (August 2015). Aqueduct Projected Water Stress Country Rankings

120°0.000'E

32

40°0.000'E



# **Climate and Rainfall**

The Philippines has a tropical and maritime climate with relatively high temperature and humidity, and with seasonal and spatial variability in rainfall. The climate is mainly influenced by the country's location, physical geography, and by large-scale systems, such as monsoons, tropical cyclones, and the El Niño-Southern Oscillation (ENSO).

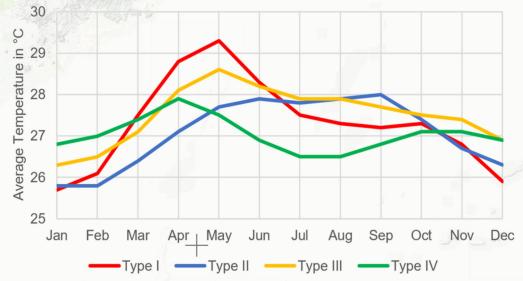
On average, the seasonal temperature varies from about 25.5°C in January (the coolest month) to 28.3°C in May (the hottest month). Station data indicate that altitude, not latitude, is the more significant factor affecting the spatial variability in temperature.

Rainfall is an important driver of climate variability in the Philippines. The country's climate is influenced by its geographical position and wind system prevalent in different localities at certain times of the year. The country's climate is classified according to the Modified Coronas Classification which is based on the seasonal variability of rainfall combined with the influence of the country's topography, and air stream direction. These are:

- Type I Two pronounced seasons dry from November to April and wet the rest of the year.
- Type II No dry season with very pronounced maximum rainfall from November to April and wet the rest of the year.
- Type III– Seasons not very pronounced: relatively dry from November to April and wet the rest of the year.
- **Type IV** Rainfall more or less evenly distributed throughout the year.

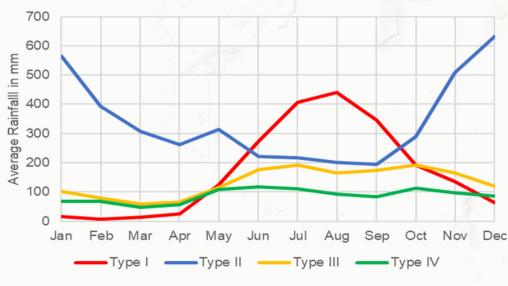
Figure 14 and Figure 15 show the recorded monthly average temperature and rainfall in selected areas<sup>9</sup> and gauging stations for each type of climate.

Monsoons also influence climate variability. The country experiences two monsoon seasons — the southwest monsoon (habagat) and the northeast monsoon (amihan). The former, experienced from May to September, brings abundant rainfall over the western coast of the country; the latter affects the eastern side from October to March. Tropical cyclones also contribute to rainfall in the Philippines, and can bring strong winds and heavy rains with destructive impacts. Every year, an average of 19 to 20 tropical cyclones enter the Philippine Area of Responsibility (PAR) and about seven to nine make landfall<sup>10</sup>.


Additionally, the ENSO affects interannual climate variability and seasonal rainfall in the country through its warm (El Niño) and cold (La Niña) phases. El Niño lasts from 8-12 months, occurs every 2-7 years and is strongest every 10-15 years. La Niña lasts for 1-3 years and occurs every 3-4 years.

# Climate Projections +

The Philippine's water resources greatly depend on rainfall for recharge. However, the prevailing effects of climate change have had significant implications on the country's water sources and WSS infrastructure that may affect water supply at present and in the future.


The PAGASA has generated projections of temperature increase and rainfall change in the Philippines. Its projections were based on climate trends and historical records from 1971-2000 as the reference value. Key findings<sup>11</sup> include the following:

- There has been an increase in annual mean temperature by 0.57°C.
- In terms of maximum and minimum temperatures, the increases have been recorded at 0.35°C and 0.94°C.
- An average of 20 tropical cyclones form and/or cross the PAR per year with strong multi-decadal variability. There still is no indication of increase in the frequency, but rather a very slight increase in the number of tropical cyclones with maximum sustained winds of greater than 150 kilometers per hour (kph) and above (typhoon category) being exhibited during the El Niño period.
- The analysis of the trends of extreme daily temperatures and extreme daily rainfall indicates a significant increase in the number of hot days and decrease in the number of cool nights. Rainfall patterns (extreme rainfall intensity and frequency) are not clear, both in magnitude and direction (whether increasing or decreasing), with very little spatial coherence.



60°0.000'N

<sup>9</sup> Manila (Type I), Borongan, Eastern Samar (Type II), Cebu City (Type III), and General Santos City (Type IV)
<sup>10</sup> Climate Change in the Philippines, Feb 2011, PAGASA
<sup>11</sup> Ibid.
<sup>12</sup> climate-data.org
<sup>13</sup> Ibid.



80°0.000'E

Figure 15: Average Rainfall per Climate Type<sup>13</sup>

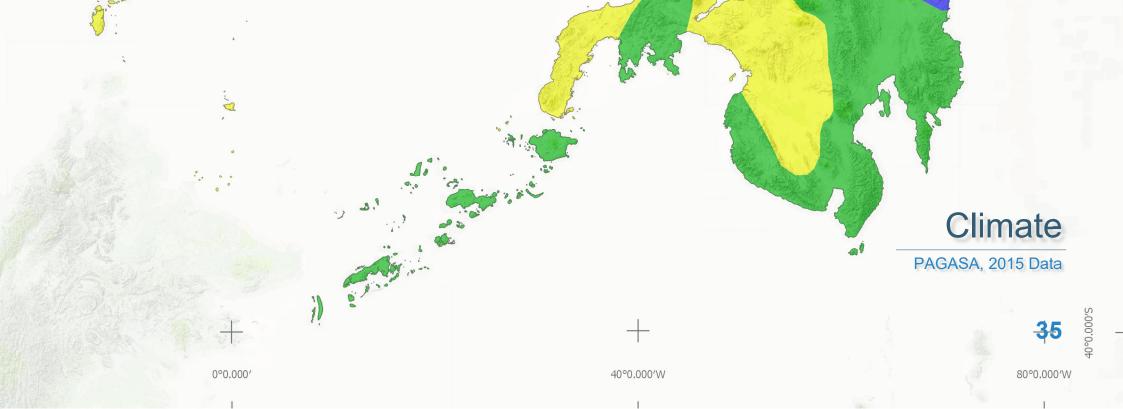


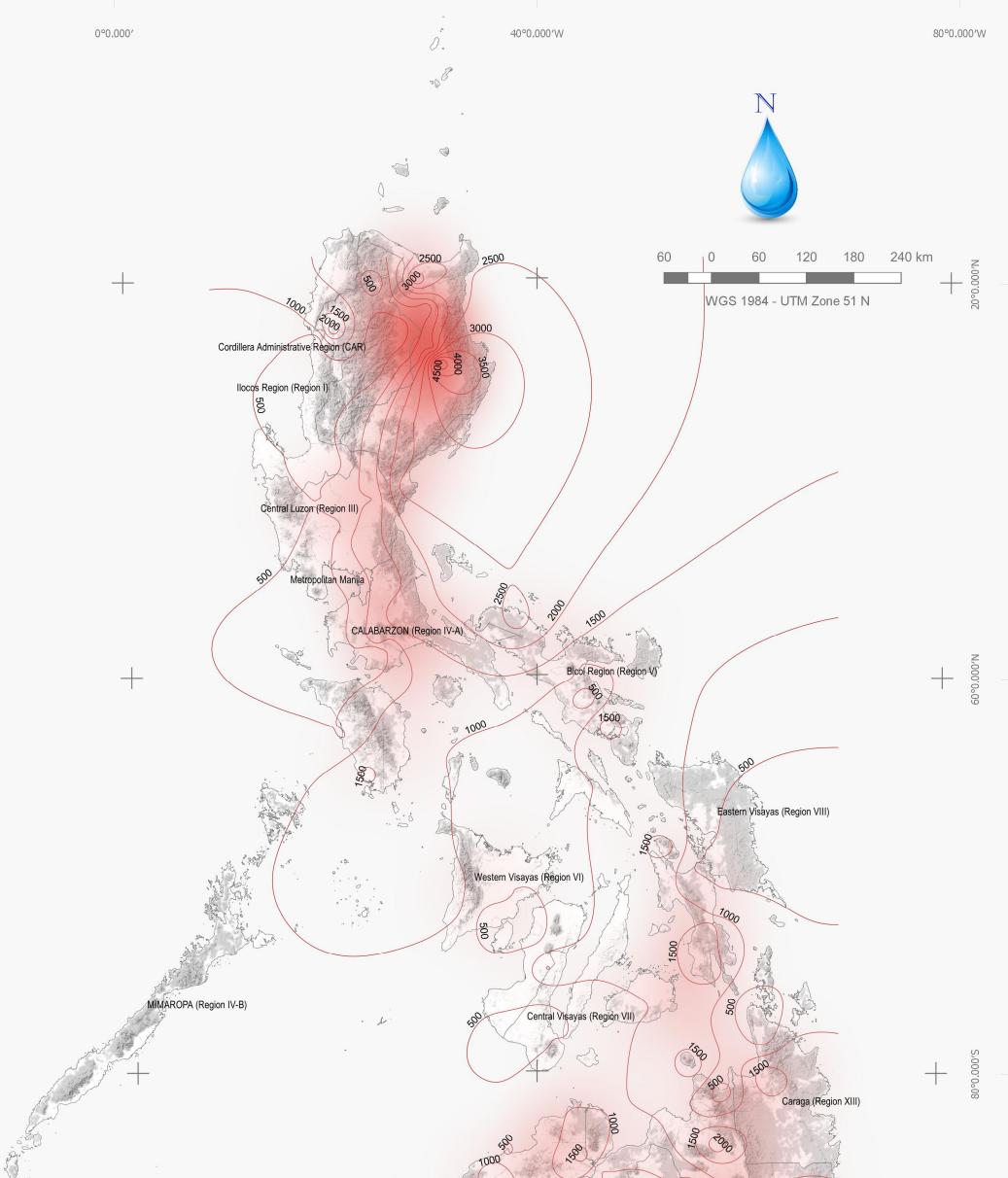




+

20°0.000'h


60°0,000'N


80°0.000'S

N

### Legend

- Type I two pronounced season, dry from November to April and et during the rest of the year. Maximum rain
  period is from June to September.
  Type II - no dry season with a very
  - pronounced maximum rain period from December to February. There is not a single dry month. Minimum monthly rainfall occurs during the period from March to May.
- Type III no very pronounced maximum rain period with a dry season lasting only from one to three months, either during the period from December to February or from March to May. This type resembles Type I since it has a short dry season.
- Type IV rainfall is more or less evenly distributed throughout the year. This type resembles Type 2 since it has no dry season.





Zamboanga Peninsula (Region IX)

Autonomous Region of Muslim Mindanao (ARMM)

1000

1000

00

Davao Region (Region XI)



B. M. Sood

30

PAGASA, 2015 Data

36

40°0.000′W

+

40°0.000'S

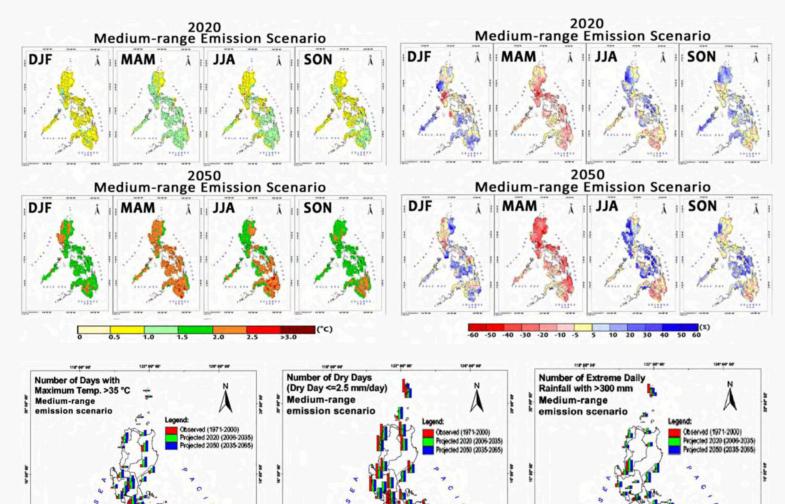
80°0.000′W

Climate projections for 2020 and 2050 were simulated under a medium range emission scenario (although highand low-range scenarios were also thought up). The medium range scenario has been included considering that climates in the next 30 to 40 years will be greatly influenced by past greenhouse gas emissions already there (i.e., the lifetimes of carbon dioxide are a hundred years or more).

PAGASA's key findings<sup>14</sup> and the implication thereof on water resources, as well as supply and demand include the following:

- All areas of the Philippines will get warmer, more so in the relatively warmer summer months.
- Annual mean temperatures (average of maximum and minimum temperatures) in all areas in the country are expected to rise by 0.9°C to 1.1°C in 2020 and by 1.8°C to 2.2°C in 2050.

Increased temperatures also increase water use and demand of the population. In addition, the highest temperatures will likely occur during the dry season when water sources are typically depleted, furthering widening the gap between supply and demand.


- Likewise, all seasonal mean temperatures will increase during the four seasons (e.g., Dec-Jan-Feb [DJF], Mar-Apr-May [MAM], Jun-Jul-Aug [JJA] and Sep-Oct-Nov [SON]) and will be quite consistent in all the provinces.
- In terms of seasonal rainfall change, generally, there
  is a substantial spatial difference in the projected
  changes in rainfall in 2020 and 2050 in most parts of
  the Philippines, with reduction in rainfall in most
  provinces during the summer season (MAM) making
  the usually dry season drier\*. Rainfall increases are

likely in most areas of Luzon and Visayas during the southwest monsoon (JJA) and the SON seasons, making these seasons still wetter\*\*, hence the likelihood of both droughts and floods in areas where these are projected.

\* The already diminished yield of water sources during the dry season will be further reduced.

\*\* Increased rainfall brings significant excess run-off which should be strategically stored (i.e., in impounding reservoirs, retention and detention basins) for future use. Flooding, a likely result of heavy rainfall, also poses various risks to WSS infrastructure and water supply delivery.

- The northeast monsoon (DJF) season rainfall is projected to increase, particularly for areas with a Type II climate thus enhancing the potential for flooding.
- During the southwest monsoon season (JJA), significant increases in rainfall are expected in provinces in Luzon (0.9% to 63%) and Visayas (2% to 22%) but there will be generally decreasing trends in most provinces in Mindanao in 2050;
- Projections for extreme events in 2020 and 2050 show, however, that hot temperatures (indicated by the number of days with maximum temperature exceeding 35°C) will continue to become more frequent. The number of dry days (days with less than 2.5 mm of rain) will increase in all parts of the country. Heavy daily rainfall events (with rains exceeding 300mm) will also continue to increase in number in Luzon and Visayas.



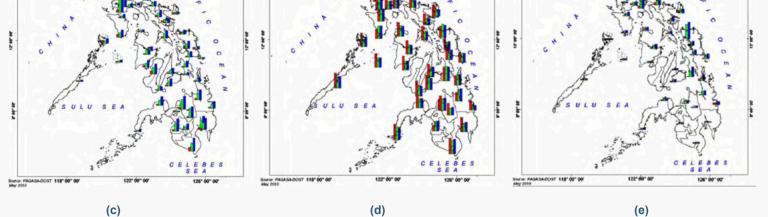



Figure 16: PAGASA Projection Maps in 2020 and 2050<sup>15</sup>

(a) Projected seasonal temperature increase (in °C)

- (b) Projected rainfall change (increase/decrease) in %
- (c) Number of days with maximum temperatures exceeding 35 °C (current or observed)
- (d) Current and projected number of dry days
- (e) Current and projected extreme rainfall

<sup>14</sup> Climate Change in the Philippines, Feb
 2011, PAGASA
 <sup>15</sup> Ibid.

3

# Demand

## Philippine population stood at about 100,981,437 as of 2015.

A large percentage of the country's population is concentrated in Luzon.

The annual population growth rate for 2010 - 2015 was registered at 1.72%. From the 1.90% from 2000 - 2010, population growth has shown signs of slowing down.

At the regional level, CALABARZON has the largest population reaching 14.4 million, followed by NCR at 12.9 million, and Central Luzon with 11.2 million. On the other hand, the least populated regions are MIMAROPA with only 3 million, Caraga with 2.6 million and Cordillera Administrative Region (CAR) with only 1.7 million.

In regard to the population growth of the 33 highlyurbanized cities, four have been identified to have exceeded the one million mark. These are Quezon City, Manila, Davao City and Caloocan City. The least populated HUC's are Tacloban City, Olongapo City and City of San Juan.

## **Population Projection**

Population projection is an important factor in estimating the future water and sanitation demand of a study area. It is a study of a recorded pattern of population growth seeking to establish future trends.

Population projections for the PWSSMP used PSA's 2010 Census-based projections as a primary basis. Available data were updated and adjusted to reflect the latest 2015 Census population figures from which quantitative data on future population were estimated.

PSA's projections employed the Cohort-Component Method based on the fact that demographic processes such as fertility, mortality, and migration affect and change population.

Projected growth rates up to the province levels are available until the year 2040. These figures were employed, updated and adjusted with the 2015 Census as the baseline date. Historical trends analyses were also conducted in the population projections.

Moreover, the percentage of rural and urban population is based on the 2010 Census of Population and Housing's classification of each barangay in the entire country. Based on the most recent release, a barangay is classified as urban if it meets any of the following:

- It has a population size of 5,000 or more.
- It has at least one establishment with a minimum of 100 employees.
- It has five or more establishments with 10 to 99 employees, and five or more facilities within the two-kilometer radius from the barangay hall.

A barangay which does not satisfy any of the criteria above is classified as rural.

In the absence of data, the percentage of urban and rural population determined from the 2010 CPH is assumed to be constant and is applied on the projected population until 2040.

Figure 17 shows the projected population per region by 2040. The country's total population is projected reach approximately 137 million by 2040.

The succeeding maps shows the projected increasing population per city/municipality in five-year intervals from the baseline 2015 to 2040.

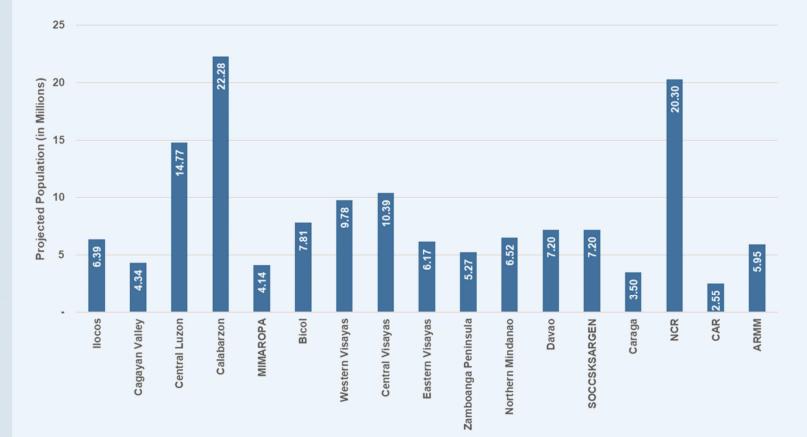
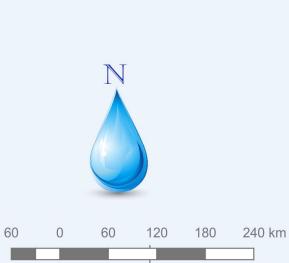




Figure 17: Population Projection per Region, 2040



WGS 1984 - UTM Zone 51 N

0°0.000′

Legend

2015 Population Density per Square Kilometer 0.07 - 0.76 0.76 - 1.36 1.36 - 1.86 1.86 - 2.39 2.39 - 2.92 2.92 - 3.70 3.70 - 4.73 4.73 - 6.76 6.76 - 11.77 40°0.000′W

+

: X-

•

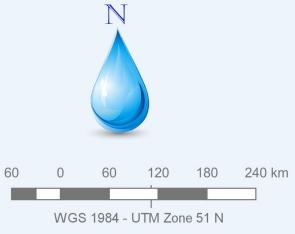
8.

800

 $\bigcirc$ 

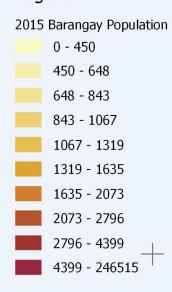
3

80°0.000'W


+

+

+








Z0°0.000'N

Legend



40°0.000′W

+

- -

8.

·00 5

+

+

## Population, 2015

-

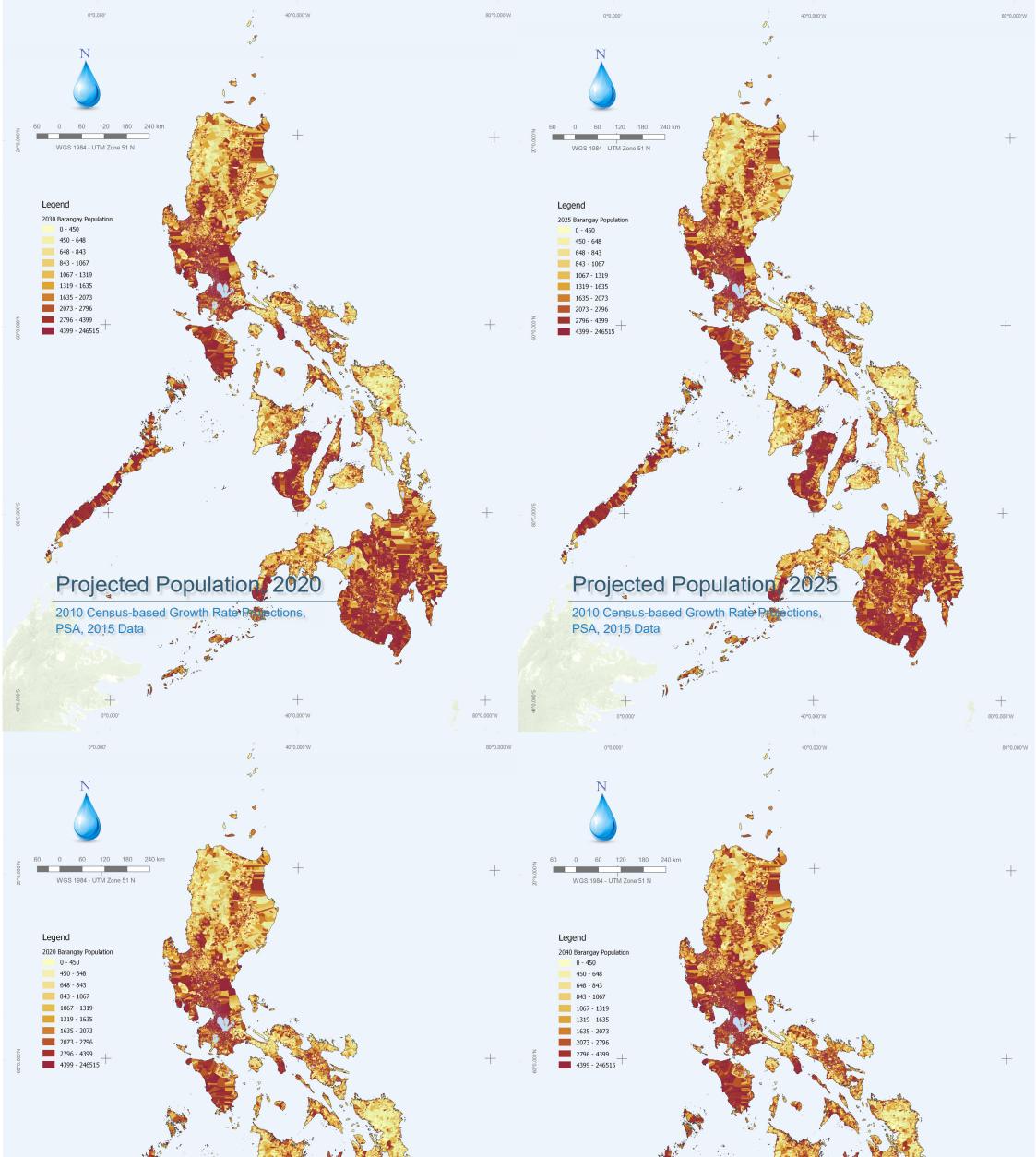
3.

.)

į)

PSA, 2015 Data

40


0°0.000′

40°0.000′W

+

80°0.000'W

+



+

+ 80°0.000'W

## Projected Population 2030

2010 Census-based Growth Rate Projections, PSA, 2015 Data

+

40°0.000'W

8 <u>1</u>7

+ 0°0.000′ Projected Population 2040

2010 Census-based Growth Rate Projections, PSA, 2015 Data

0°0.000′

+

40°0.000'W

+

+ 80°0.000'W

80°0.000'E

Water demand projection is fundamental in preparing water supply feasibility studies and preliminary engineering designs. It also serves as an important tool in the preparation of master plans, considering the future needs of the growing population.

In general, the total water demand projected for the PWSSMP is equal to the sum of the domestic, commercial, institutional, and unaccounted-for water.

Primary considerations in the water demand projection for PWSSMP included population and the degree of urbanization in the study area. Additionally, the level of commercialization was also taken account.

#### Domestic Water Demand

Unit consumption for domestic water demand is expressed in per capita consumption per day. The commonly used unit is liters per capita per day (lpcd). Generally, urban areas are most commonly served by Level III water system facilities which ideally would have a better level of service, higher water pressure, and longer (if not round-the-clock) water availability. Hence, an urban population typically has higher water demand than a rural population relying mostly on Level I and Level II water systems and sources.

In projecting water demand, the unit consumption used is 120 lpcd for an urban population, and 60 lpcd for a rural population.

For highly urbanized areas, 150 lpcd and 80 lpcd are used for urban and rural populations, respectively.

As of 2015, the estimated demand for domestic use per day was recorded at 9.39 MCM.

### **Commercial Water Demand**

To estimate commercial water demand, the relationship between the extent of commercial activities and the service area population is considered. Commercial demand varies from a minimum of 0.3 to a maximum of 1.2 cubic meters per day (m<sup>3</sup>/day) per connection per 100 inhabitants with the more developed areas having the higher level of connection density. Unit consumption is estimated to increase until 2040.

This study assumed the range of 0.6 m<sup>3</sup>/day to 1.6 m<sup>3</sup>/ day for an urban population and 0.5 m<sup>3</sup>/day to 1.3 m<sup>3</sup>/day for a rural population.

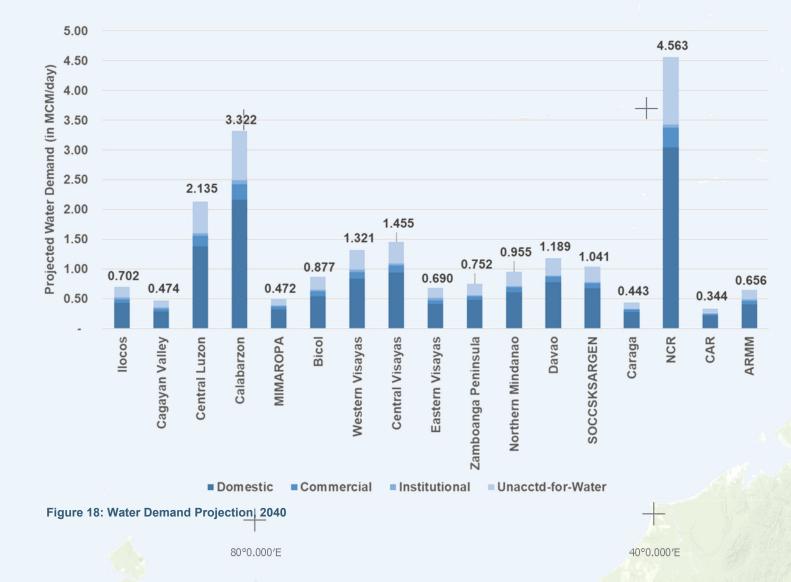
Estimated commercial water demand per day for 2015 was 0.71 MCM.

### Institutional Water Demand

Institutional water consumers include schools, churches, public administration edifices, buildings, and hospitals. The present and proposed institutional establishments in the coverage areas should be considered in projecting institutional connections. With the lack of a complete and comprehensive inventory of institutions and establishments that would represent institutional connections, it can be assumed that for every 2,000 inhabitants in an area, one institutional connection exists.

Records of average consumption per institutional connection are also lacking, if not scarce. So unit consumption per connection may be assumed to have a demand of 7.5 m³/day as suggested by LWUA.

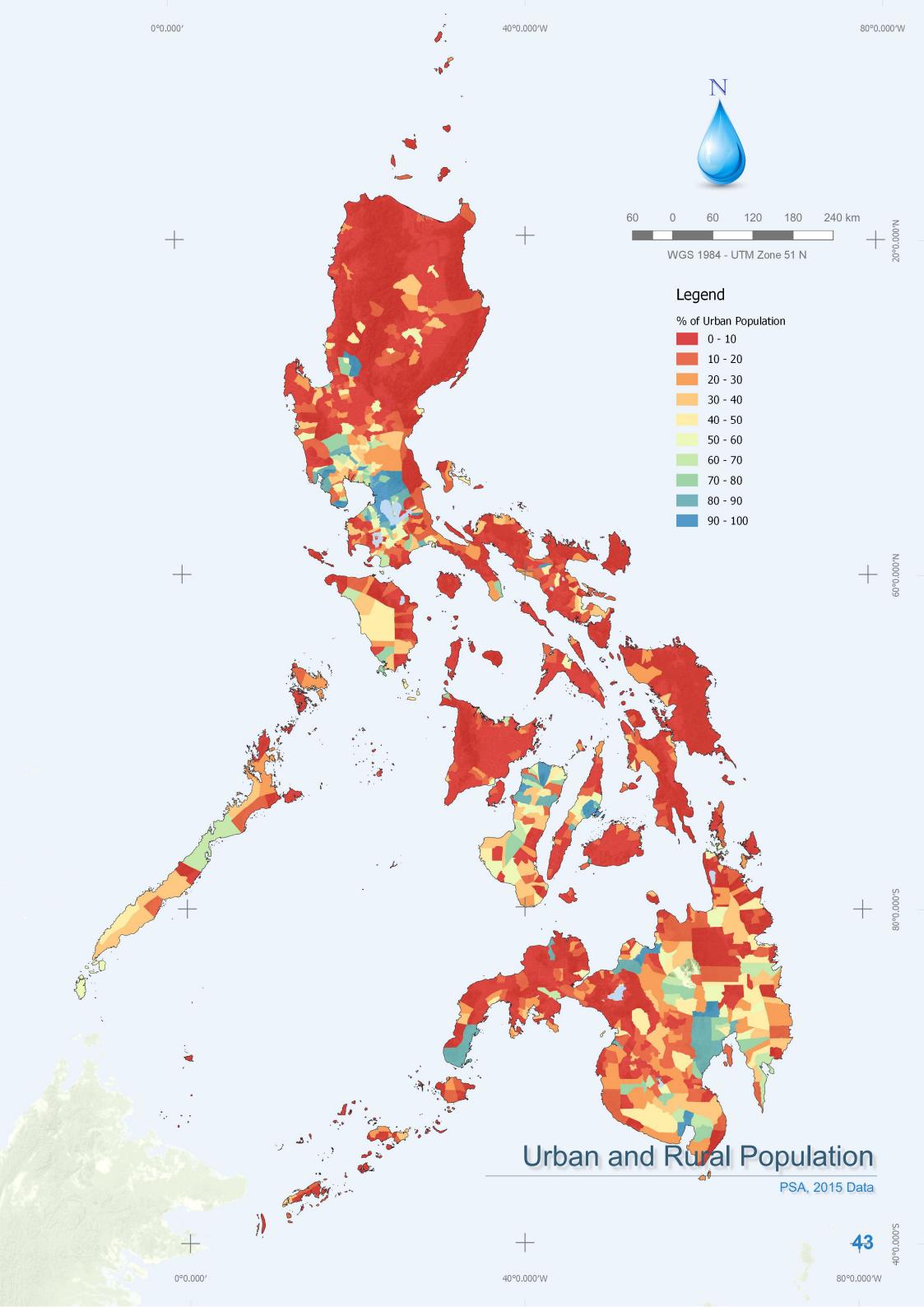
Estimated institutional water demand per day for 2015 was recorded at 0.31 MCM.

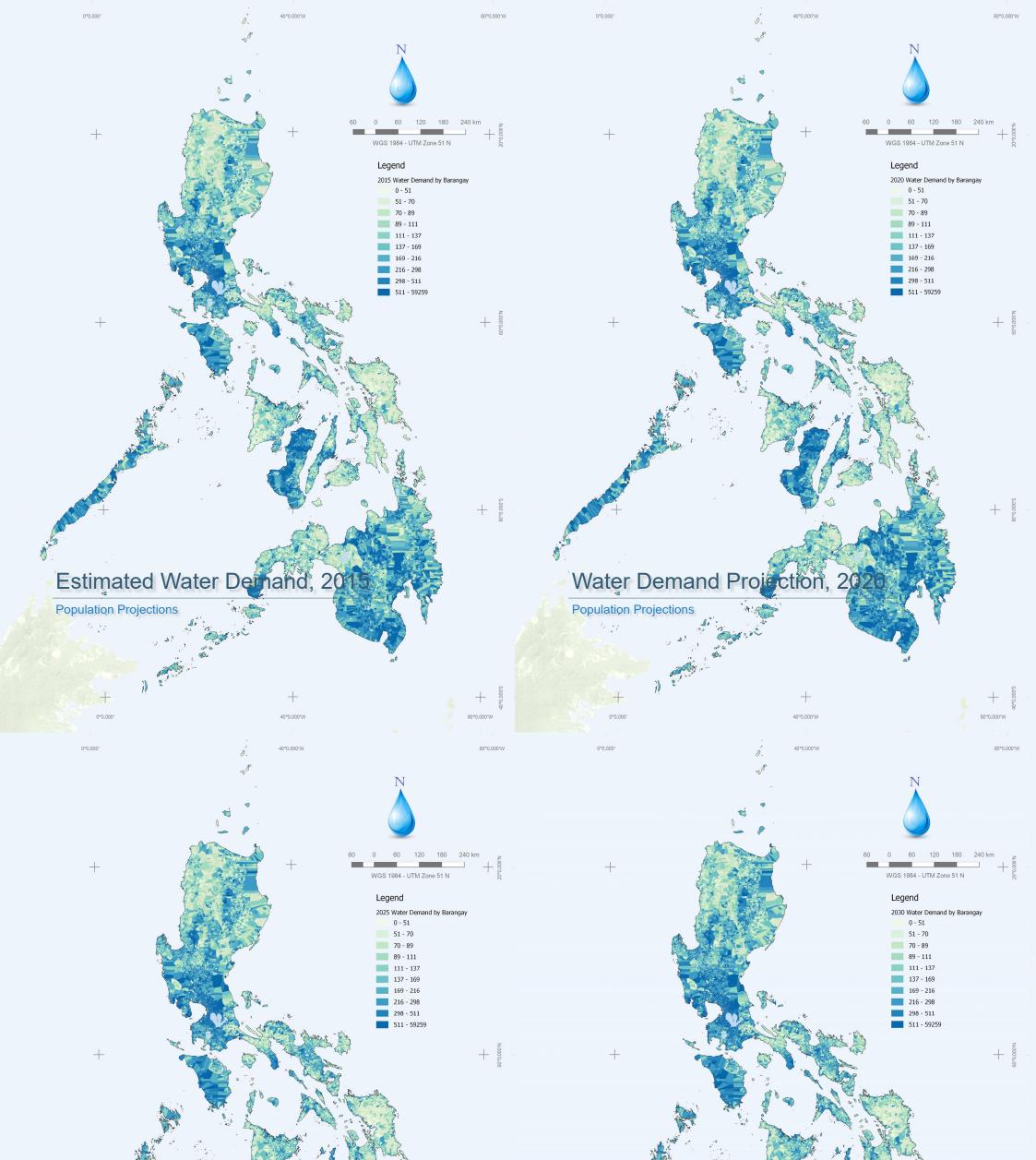

#### Unaccounted-for Water

Usually, when projecting water demand in a study and in planning water supply projects, unaccounted-for water is considered. This usually represents wastage, leakage, and water losses, and is estimated as a fraction of the total water production of a water utility. For this study, unaccounted-for water is estimated at 25% of the total water demand, which is the percentage typically and universally used in water demand projections.

Totaling the 2015 domestic, commercial and institutional water demand figures, it is equivalent to about 10.41 MCM per day. Adding up the unaccounted-for water (25%), the total water demand per day for 2015 reached approximately 13.86 MCM.

By 2040, the country's total water demand is projected to be approximately 21.4 MCM per day.


The succeeding maps shows the projected water demand per city/municipality in five-year intervals from the baseline 2015 to 2040.




40°0.000'S

42

120°0.000'E





+

+

80°0.000'W

## Water Demand Projection, 202

+

40°0.000'W

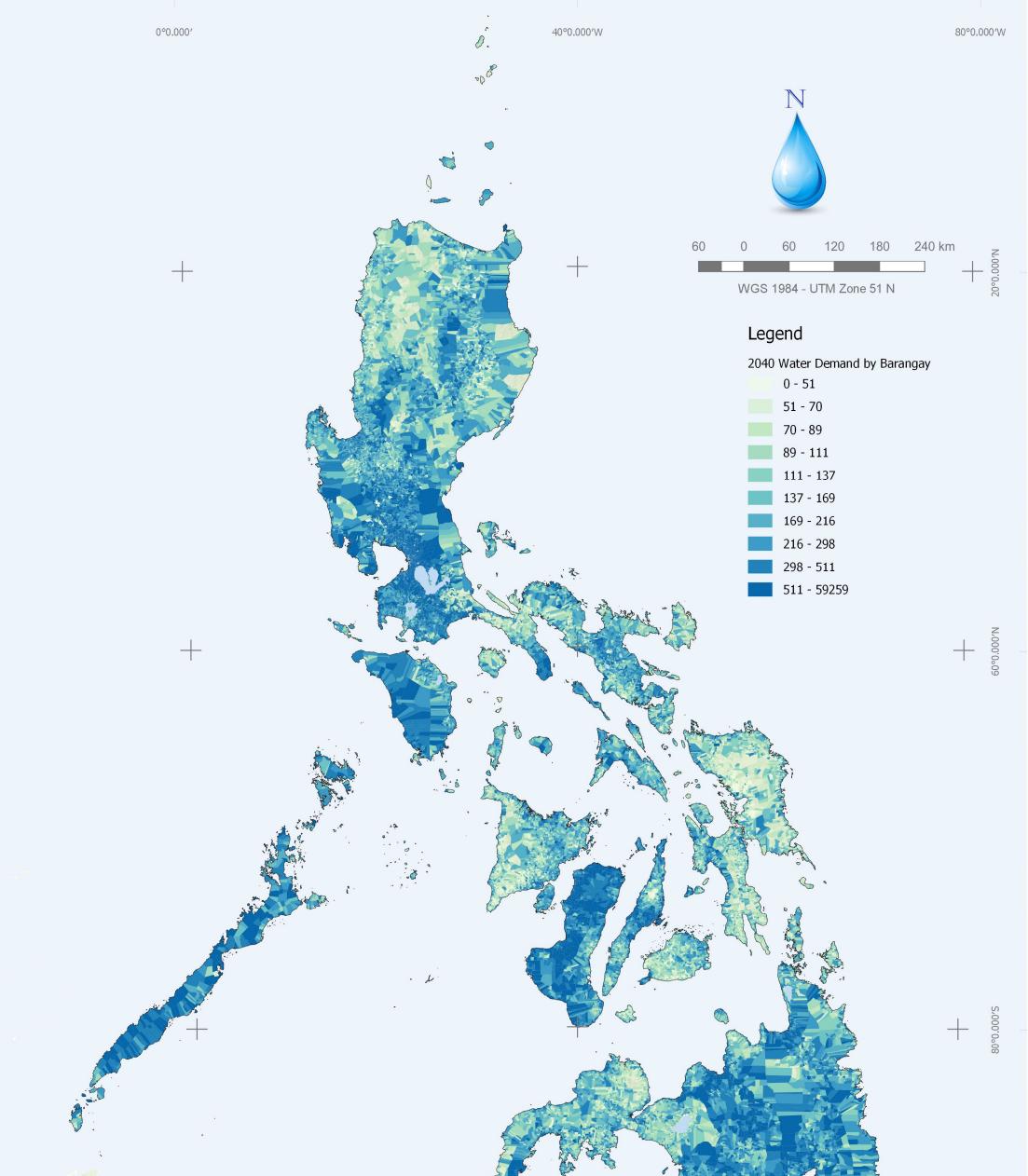
Population Projections

0°0.000

44

## Water Demand Projection, 2080

Population Projections


17

0°0.000′

+

+

+





40°0.000'S

0°0.000′

1)

40°0.000'W

+

80°0.000′W

80°0.000'E

# Sanitation

## **Open Defecation**

The Joint Monitoring Programme (JMP) for Water Supply, Sanitation and Hygiene of the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) defines open defecation as "the practice of defecating in fields, forests, bushes, bodies of water or other open spaces".

Open defecation can pollute the environment and cause health problems. According to the JMP, high levels of open defecation are linked to high child mortality, poor nutrition, poverty, and large disparities between rich and poor. It perpetuates the vicious cycle of disease and poverty and is widely regarded as an affront to human dignity. It poses risks to children's health and well-being and to public health.

The elimination of open defecation is recognized as a top priority for improving health, nutrition and productivity of developing country populations and is explicitly mentioned in SDG target 6.2. It is a challenge affecting millions of households nationwide.

The reasons for open defecation are varied. It can be a voluntary, semi-voluntary or involuntary choice. Most of the time, a lack of access to a toilet is the main reason. However, in some places even people with toilets in their homes prefer to defecate in the open.<sup>16</sup>

A few broad factors that result in the practice of open defecation are listed below:

- Absence of Toilets People in most rural areas often have no toilets in their homes, or in the areas where they live. Lack of toilets in places away from people's homes, such as in schools or in the farms, compels people to defecate in the open. Also, in some rural communities, toilets are used for other purposes, such as storing household items, animals, and farm products or used as kitchens. Another example is a lack of public toilets in cities which can be a big problem for homeless people.
- Uncomfortable or Unsafe Toilets Toilets in many rural homes and public toilets are broken or of poor quality. Some toilets are installed with no doors or cubicles hence the absence of privacy. In some communities, only unisex public toilets (i.e., those not separated by gender) can be accessed. The absence of running water inside or next to toilets forces people to fetch water somewhere else.
- A "social norm" In some rural communities, people have preferred to defecate in the open (e.g., beside a river or stream, or among bushes) despite their access to toilets. In most cases, open defecation has become a way of life and a part of their cultural upbringing or ethnic tradition.

UNICEF's development program has a 29% success rate (101 triggered, 30 ODF). The Water and Sanitation Program has a 54% success rate (145 triggered, 79 ODF). Average triggering to ODF lasts from two to five months, but is longer for "difficult" barangays.

Development was accelerated by strictly enforcing sanitation action plans at the barangay level and focusing on LGU service delivery. In Yolanda-affected areas, where advocates of the Phased Approach to Total Sanitation (PhATS) are appointed to barangay positions, triggering to ODF self-declaration can be achieved in two to six weeks – but these areas have reaped benefits from massive investment and support from civil society organizations (CSOs), which are also UNICEF implementing partners, to achieve these results.

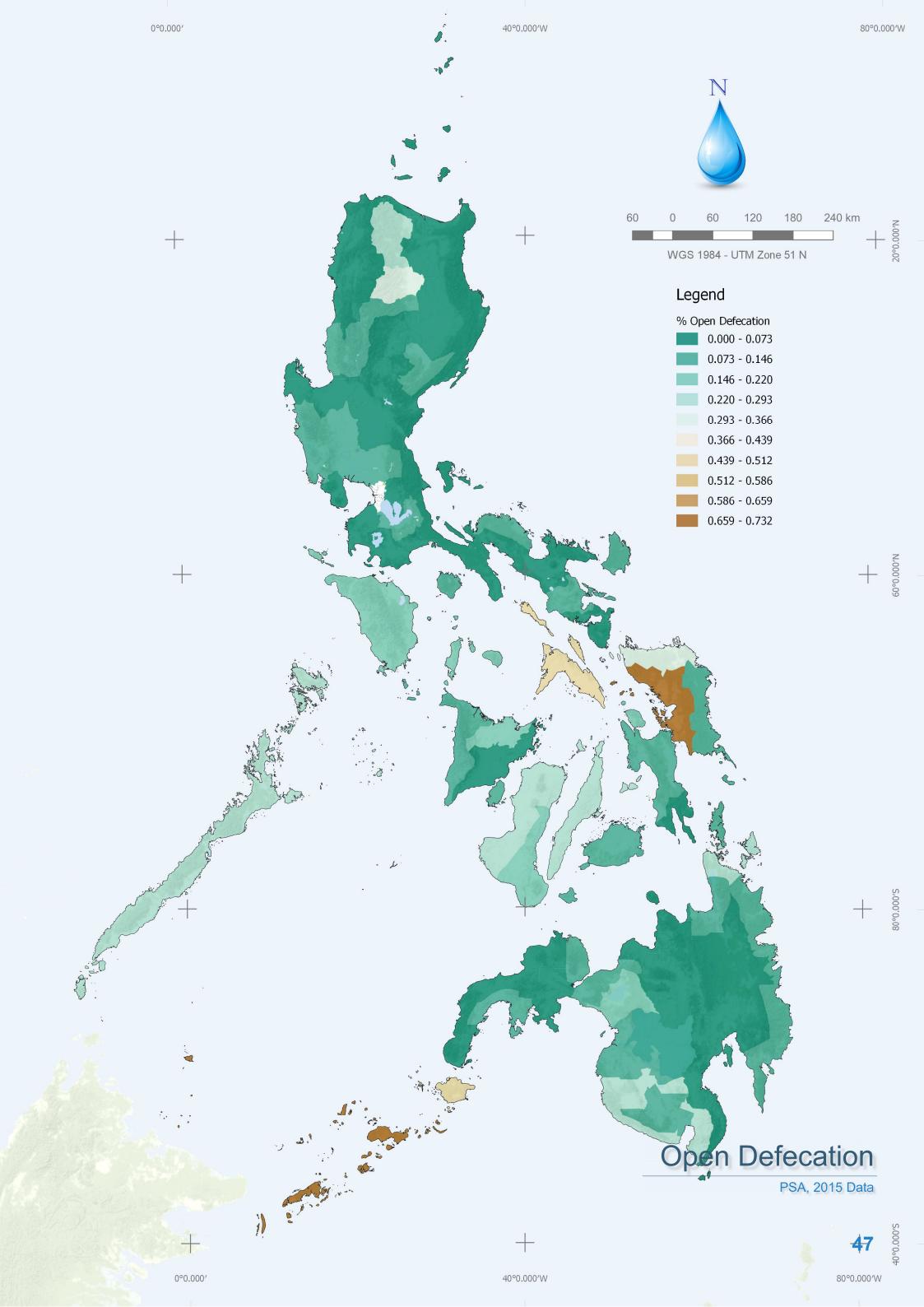
ARMM has constantly topped the list of regions where open defecation is practiced. As of 2015, about 18% of its population had no access to sanitation facilities. The Bicol Region and Eastern Visayas ranked second and third with 12% and 10%, respectively, of their population practicing open defecation.

Regions with less than 1% of the population practicing open defecation include NCR, Cagayan Valley, and Central Luzon. The map on the right gives a quick view of areas in the country's regions where open defecation is most prevalent.

<sup>16</sup> Sustainability and CLTS: Taking Stock Frontiers of CLTS: Innovations and Insights Issue 4

120°0.000'E

These issues concerning open defecation have been taken up in workshops conducted in all regions except NCR.


#### **National Status**

As of 2015, 4.23% of the country's population, or 4.27 million Filipinos, still practiced open defecation.

As of May 2015, the Philippines has triggered 677 barangays of which 473 (70%) have been certified Open Defecation-Free (ODF). The areas affected by super typhoon "Yolanda" in 2013 have been most successful with 364 barangays declared Zero Open Defecation (ZOD) out of 431 triggered (with an 84% success rate) at 2015.

80°0.000'E

40°0.000'E



20°0,000'N

## Wastewater and Domestic Biological Oxygen Demand

Wastewater produced by the domestic, industrial and agriculture sectors contributes significantly to environmental and water pollution. But wastewater is now regarded as a resource (rather than a waste product) to meet the huge water requirements of households, businesses and industries.

By using treated wastewater, the amount of waste that is usually released to the environment is cut down thus enabling the government not only to reduce health risks but also to use fewer water resources.

A measure of the organic strength of wastes in water is biological oxygen demand (BOD), which is the rate at which organisms use the oxygen in water or wastewater while stabilizing decomposable organic matter under aerobic conditions. The greater the BOD, the greater the degree of organic pollution.

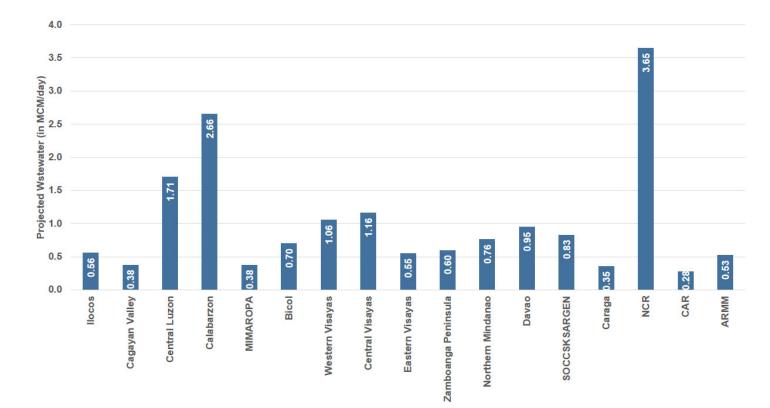
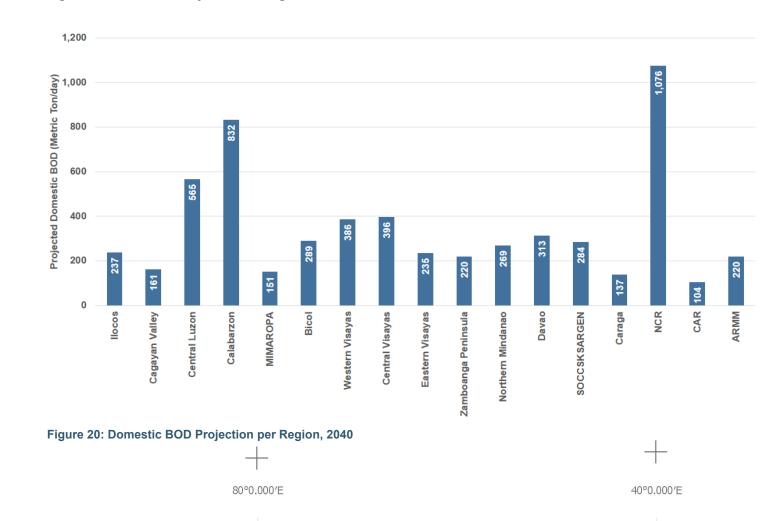
Wastewater generation can generally be estimated per sector. Domestic wastewater, for example, is estimated to be 80% of the total domestic water demand for both urban and rural areas. Domestic BOD generation, on the other hand, is calculated by multiplying the population with a BOD factor of 37 grams per person per day (unit pollution load). This BOD factor is assumed to be the national average and is applied to all regions except Metro Manila. Owing to the much more extensive activities in the country's business center, a BOD factor of 53 grams per person per day is used for Metro Manila.

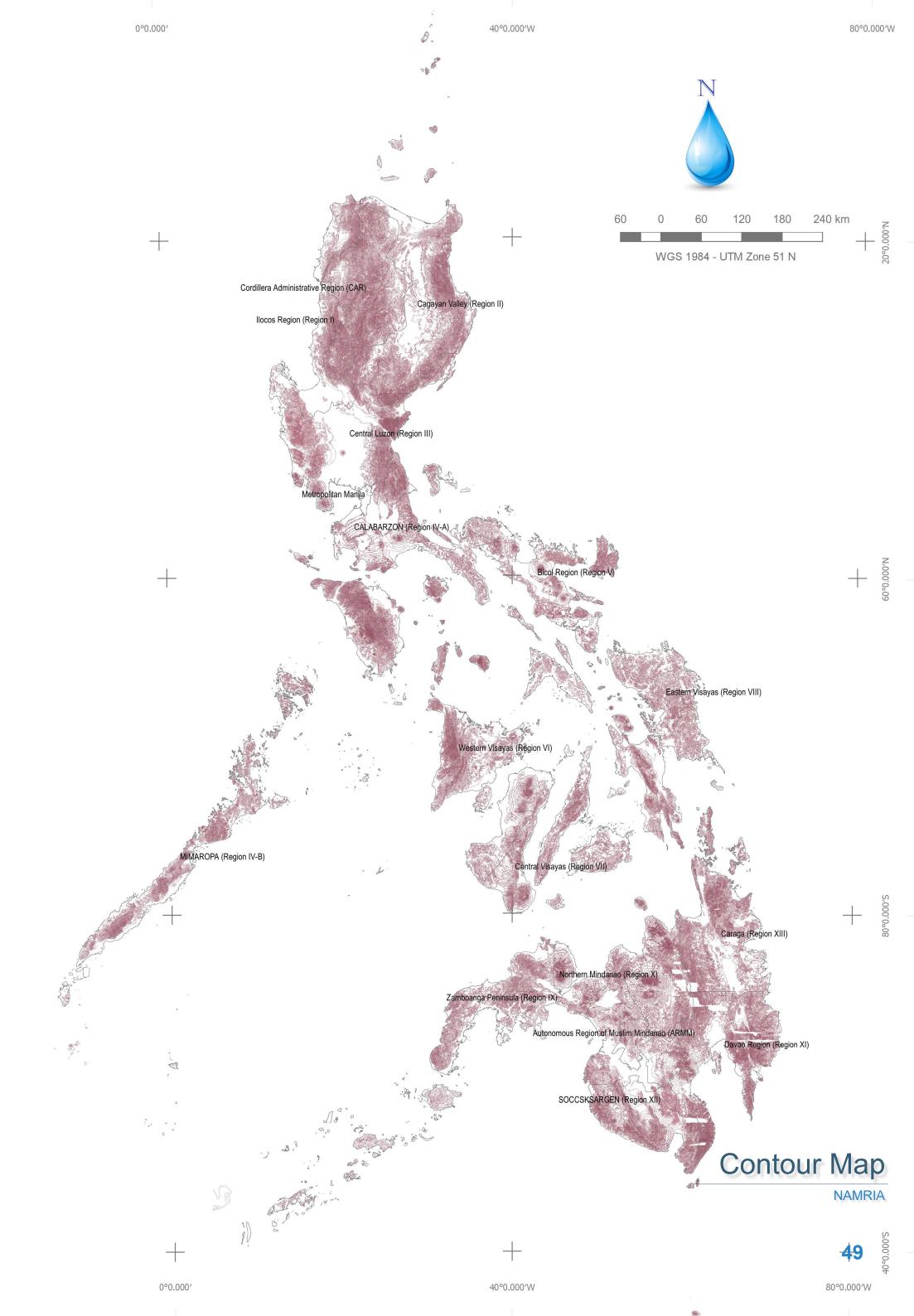
Industrial and agricultural wastewater generation may be estimated using the guidelines provided by the WHO Rapid Assessment of Sources of Air, Water, and Land Pollution. Estimations, however, heavily depend on sectoral data not currently available to the Consulting Team. Industrial wastewater is computed by industry type and is dependent on the present and future annual volume of production output per type. Agricultural wastewater generation and BOD estimation, on the other hand, are based on the present and future annual number of heads of livestock and poultry produced.

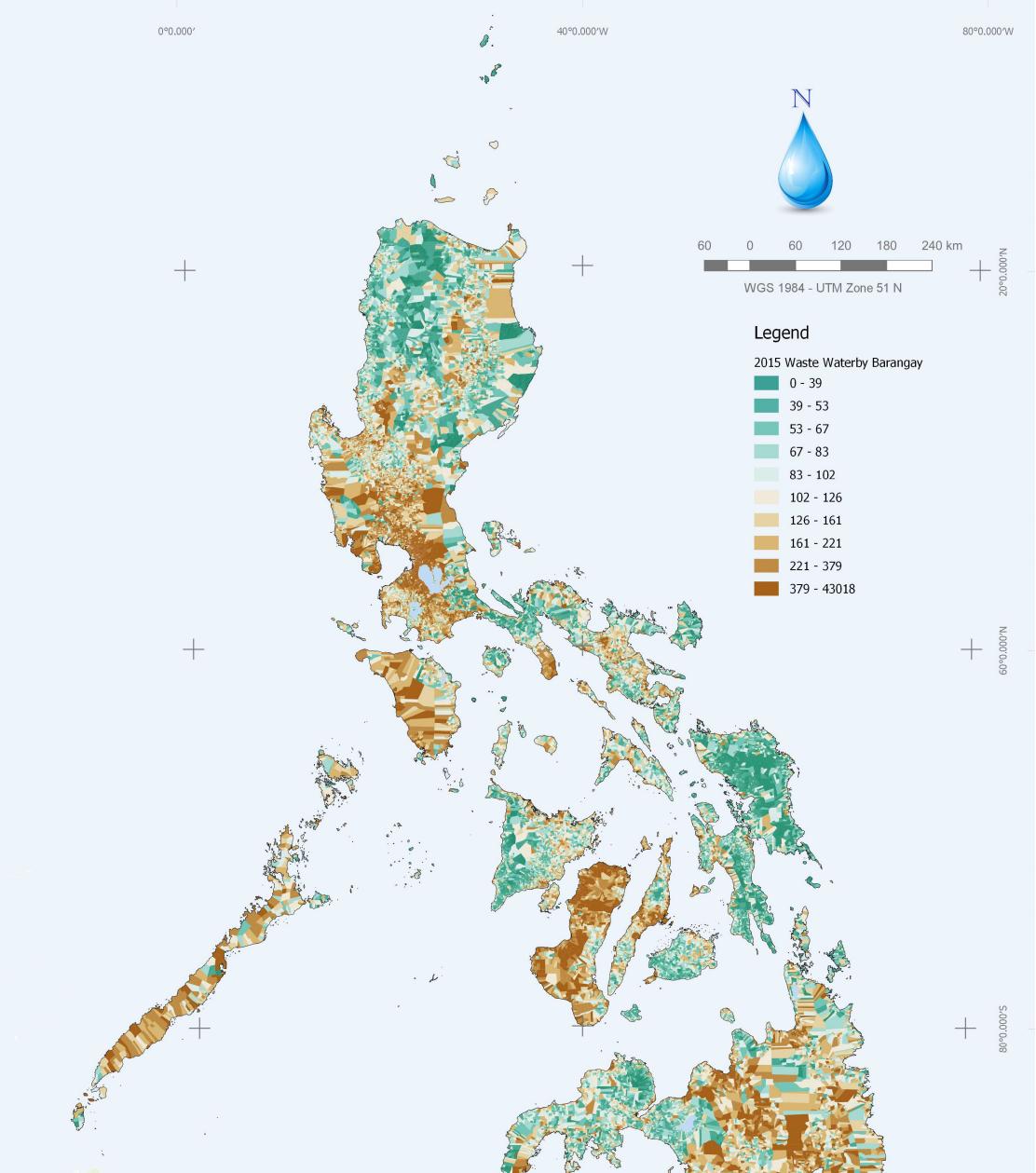
In view of this, the sanitation demand of the latter two sectors could not be projected owing to a lack of relevant data. The domestic sanitation demand, though, is adequately projected.

Total wastewater by 2040 is projected to amount to 17 MCM per day (see Figure 19). On the other hand, domestic BOD is estimated at 5,876 metric tons per day (see Figure 20).

The succeeding maps shows the projected wastewater and domestic biological oxygen demand per city/ municipality in five-year intervals from the baseline 2015 to 2040.



Figure 19: Wastewater Projection Per Region, 2040




40°0.000′S

48

120°0.000'E





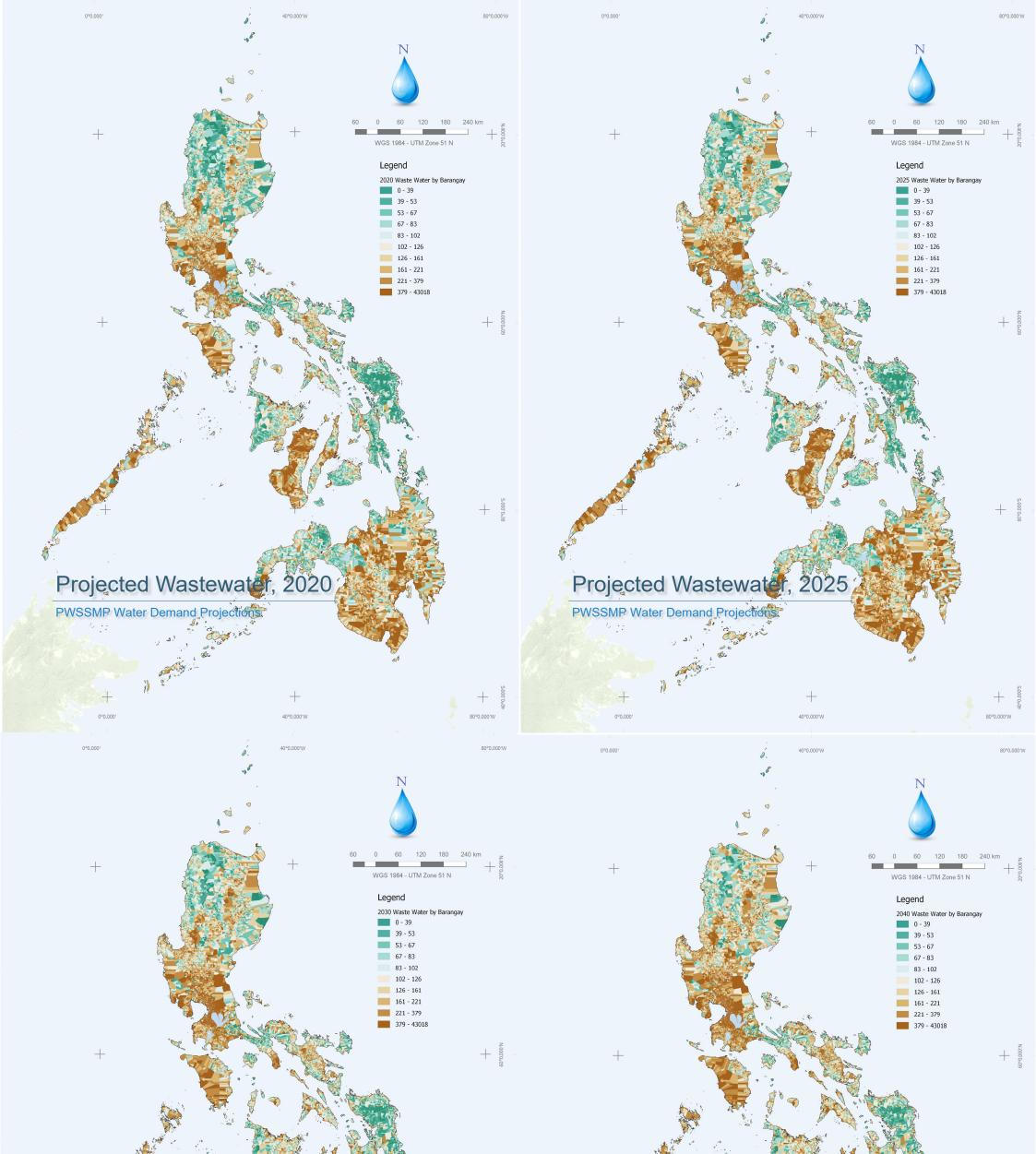
## Estimated Wastewater, 201

į)

**PWSSMP Water Demand Projections** 

50

1


40°0.000′W

+

<u>م</u>أ

40°0,000'S

80°0.000′W



+

+

80°0.000′W

+

0°0.000′

## Projected Wastewater, 2030

+

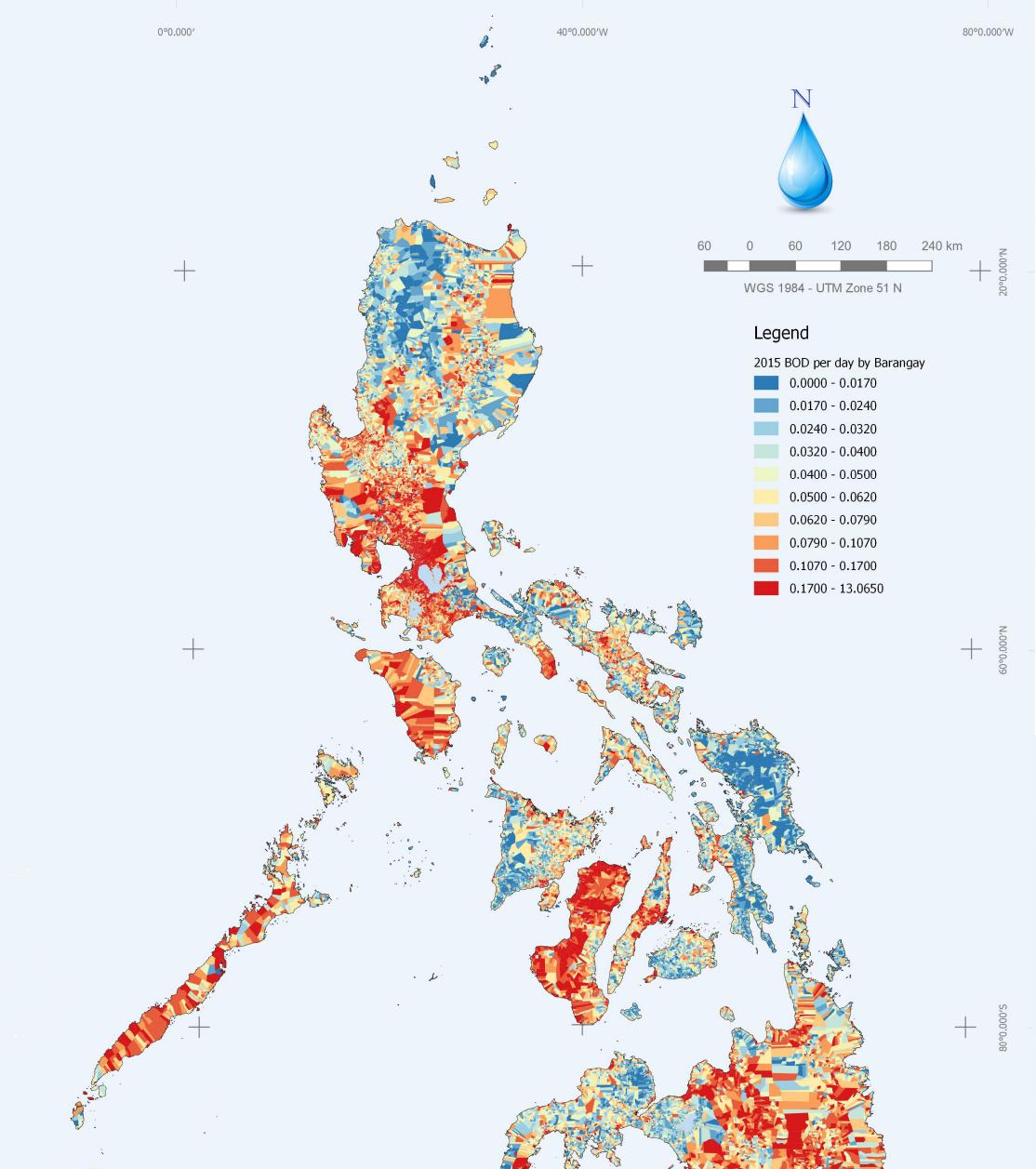
40°0.000'W

PWSSMP Water Demand Projections

+

0°0.000′

## Projected Wastewater, 2040 PWSSMP Water Demand Projections


+

40°0.000'W

+

+ 000.000

80°0.000'W



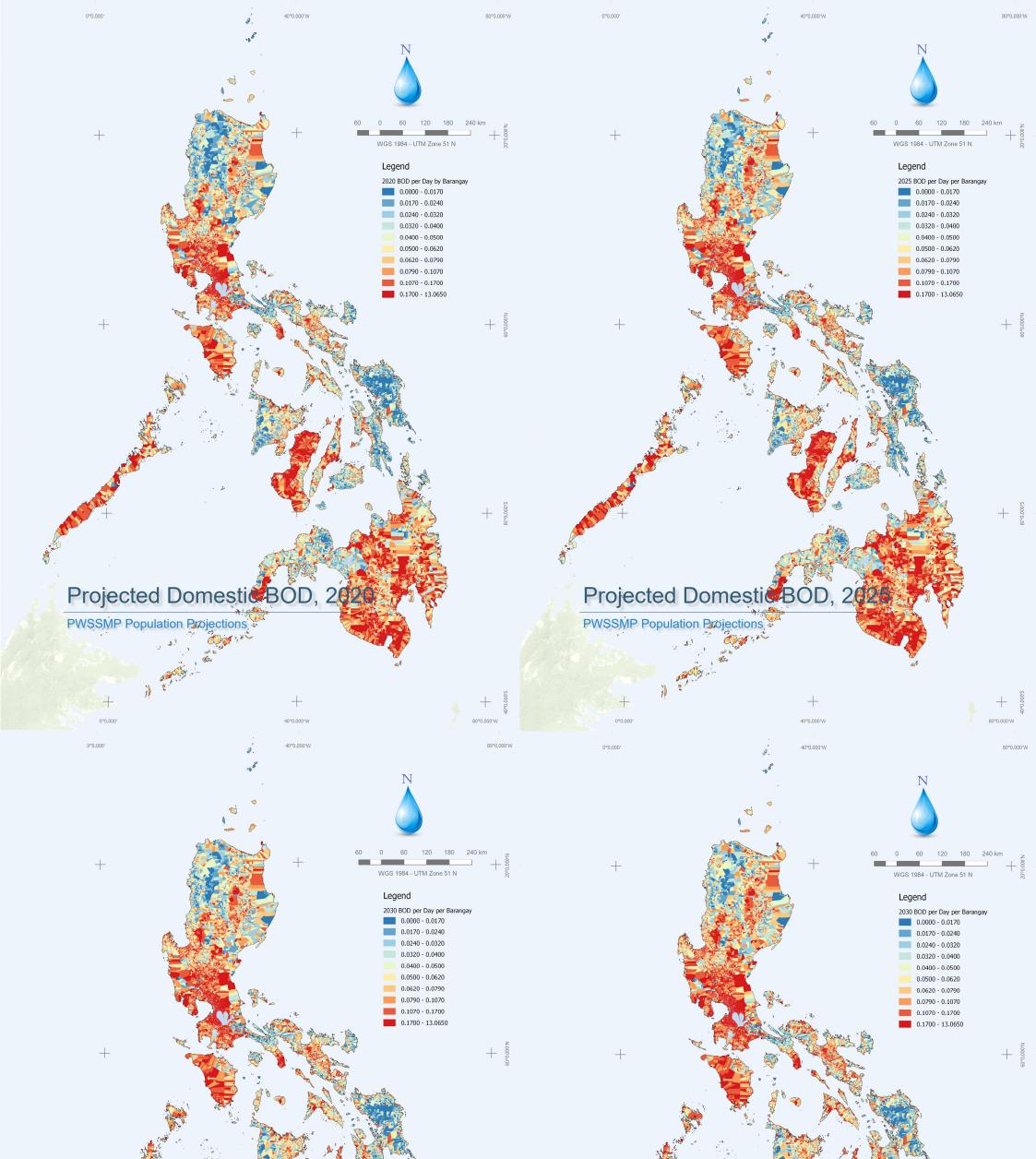
# Estimated Domestic BOD, 2015

1)

2015 Population Data, PSA

52

40°0.000'S


0°0.000′

:.. 🥰

40°0.000'W

+

80°0.000′W



+

+

80°0.000′W

## Projected Domestic BOD, 2000

+

40°0.000′W

PWSSMP Population Projections

+

0°0.000′

## Projected Domestic BOD, 20

+

40°0.000'W

PWSSMP Population Projections

+

0°0.000′



+

80°0.000'E

## Water Quality

Water quality refers to the condition of water in terms of its physical, chemical, biological and radiological characteristics. It is measured with respect to its suitability for a specific purpose based on a set of standards against which compliance can be assessed.

The WHO uses the term "water quality" to express the suitability of water to sustain various uses or processes. Any particular use will have certain requirements for the physical, chemical or biological characteristics of water.<sup>17</sup>

### Safe Drinking Water

The safety and accessibility of drinking water are major concerns throughout the world. Health risks are associated with the consumption of water contaminated with infectious agents, toxic chemicals, and radiological substances. Improving access to safe drinking water can result in tangible improvements to health.

Parameters that determine the quality of drinking water typically fall within three categories namely: physical, chemical and microbiological.

Physical and chemical parameters include heavy metals, trace organic compounds, total suspended solids (TSS), and turbidity. Microbiological parameters include coliform bacteria, *E. coli*, and specific pathogenic species of bacteria (such as the cholera-causing *Vibrio cholerae*), viruses, and protozoan parasites.

In most parts of the world, the most common contaminant of raw water sources is human sewage — in particular, human fecal pathogens and parasites.

Safe drinking water should have the following microbiological, chemical and physical qualities:

- free of pathogens
- low in concentrations of toxic chemicals
- clear
- tasteless and colorless.

Thus, to meet these standards, water quality is tested before utilizing water sources for particular purpose. If these standards are not met, water treatment is necessary.

#### Status of Water Quality in the Philippines

The Philippines is a developing country trying to catch up with the rapid pace of urbanization and industrialization taking place in many parts of the world. The sad truth, however, is that out of more than 100 million Filipinos, around 12 million rely on unsafe water sources. In fact, according to The Borgen Project (a non-profit organization seeking to fight global poverty and hunger),

#### water pollution and a lack of proper sewage in the country kills 55 people every day.

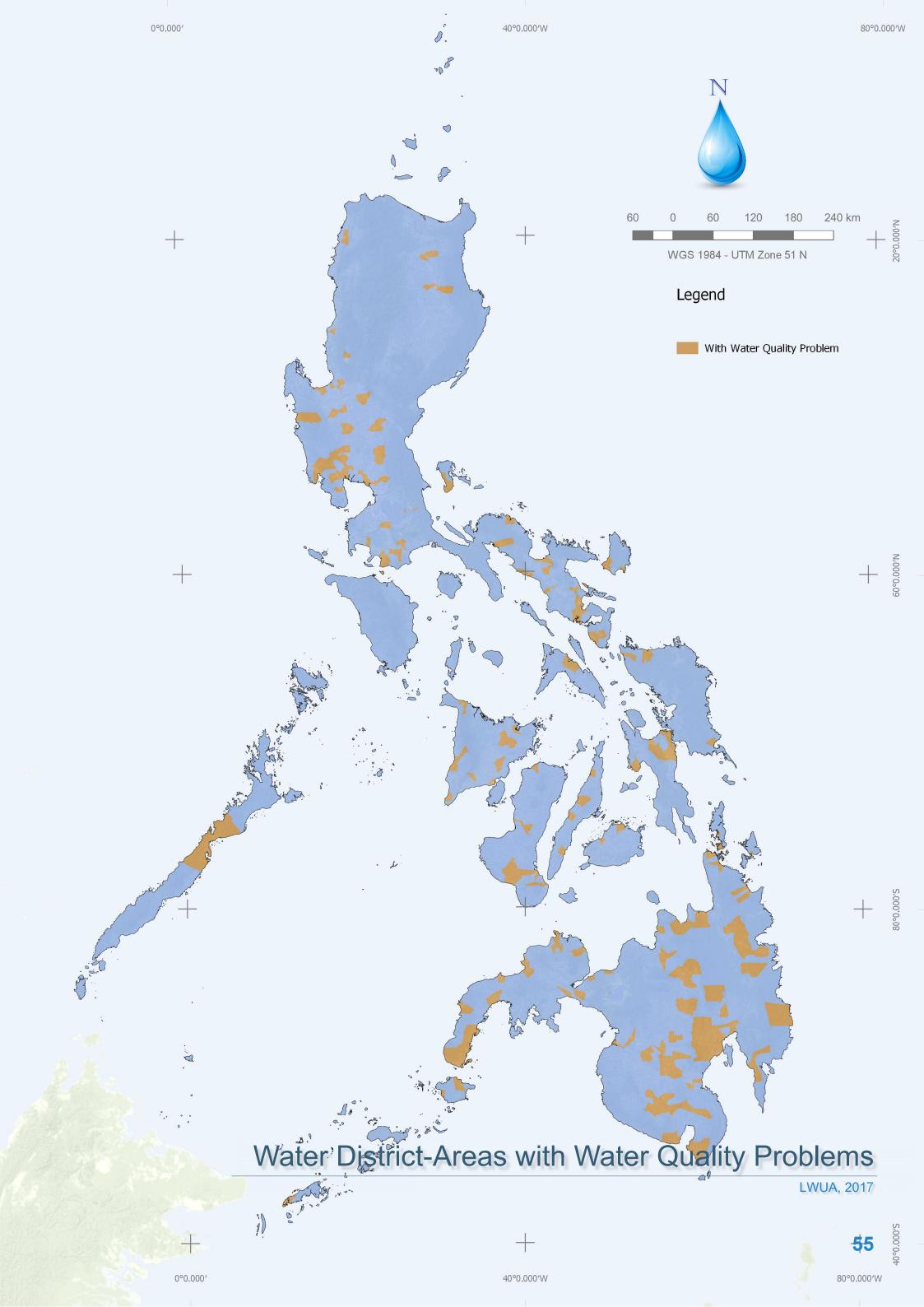
Access to adequate sanitation facilities is a problem for more than 6 million<sup>18</sup> Filipinos. This portion of the population is forced to spend considerable time, effort, and energy in procuring water. Families without sanitary toilets often face the embarrassment of venturing outside to answer the call of nature. Others have to approach their neighbors to use their restrooms. Based on studies and water quality monitoring activities, critical regions have been identified based on the state of their water quality and quantity. These include the NCR (Metro Manila), Region IV-A (Southern Tagalog), Region III (Central Luzon), and Region VII (Central Visayas).

- NCR Metro Manila has the biggest population among the country's 16 regions. It is the "hub of Philippine business and industry" facing the challenge of meeting its huge water supply need through improved water and sanitation infrastructure. The region's water resources from where water of good quality can be extracted have remained in a dismal state. Most, if not all, of its rivers (Parañaque, San Juan, Marikina, Pasig, and Navotas) sampled by the DENR Environment Management Bureau (EMB) for a period of six years have been found to be "biologically dead" during certain periods. The largest body of water - the Laguna de Bay - is under threat with rivers discharging large amounts of pollutants. (NCR belongs to the Pasig-Laguna River Basin and WRR 4.) In the collective view of regional water resource planners, the available water resource potential of the WRR and the river basin (as compared against the projected water demand<sup>19</sup> of the region) determines a ratio of 0.61, a number deemed very low and critical, according to a World Bank study.
- Region IV-A Southern Tagalog (also known as CALABARZON) has the largest land area. Special economic and industrial zones have been put up in three of its provinces. It has the biggest population surpassing that of NCR since 2000 and shares the same water resources with NCR. Water demand projections for the region show that a shortfall of water supply will take place if no water management intervention is put in place. The Pasig-Laguna River Basin occupies a large part of NCR and parts of Rizal, Laguna, and Cavite. Moreover, only a small number of the wells tested in Laguna passed the drinking water criterion for total dissolved solids and coliform content.
- Region III This region has the third highest number of manufacturing establishments and households. The Agno and Pampanga River Basins found in this region have a combined water potential which is far less than the region's projected water demand. The ratio of water demand to potential averages 0.54, which means water demand is two times more than the water potential. Moreover, a high percentage of the wells tested by NWRB and LWUA were positive for coliform bacteria.
- Region VII This region has a small land area but is the fourth largest in terms of population. Its regional center is Cebu City, which is also the region's largest city and the second largest metropolis in the country. Because it is an international commercial and business hub, the region boasts a number of manufacturing establishments. The region as a whole, however, has no large rivers and has little water resources potential. In fact, it has been threatened by

<sup>17</sup> Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programme, WHO

<sup>18</sup> Estimated number of Filipinos with no access to improved and basic sanitation facilities.

<sup>19</sup> The JICA Master Plan on Water Resources Management in the Philippines (1998) conducted water demand projections of the entire country up to the year 2025 taking into account the water demand the domestic, agricultural, industrial sectors. Water for hydropower use, although non-consumptive, was also considered. Water pollution in the Philippines is dominated by domestic and industrial sources. Untreated wastewater affects health by spreading disease-causing bacteria and viruses, making water unfit for drinking and recreational use, threatening biodiversity, and lowering the overall quality of life. Known diseases caused by poor water include gastroenteritis, diarrhea, typhoid, cholera, dysentery, and hepatitis. However, the level of public awareness regarding the need for improved sanitation and water pollution control, as reflected by the willingness and capacity to pay for a connection to a sewerage system is very low.


80°0.000'E

absolute water scarcity based on its computed water availability of 397 m<sup>3</sup> per capita per year. In particular, the island of Cebu has a potential to demand ratio of 0.76, and will most likely face grave water shortage unless its water infrastructure is improved.

The map on the right highlights the areas whose water supply sources have had problems with water quality. Data are based on the water quality reports of water districts (WDs) as consolidated by the LWUA. (Data on water supply sources not covered or owned by WDs are not reflected on this map.)

40°0.000'E

40°0.000'S



### Waterborne Diseases

Waterborne diseases are conditions caused by pathogenic micro-organisms that are transmitted in water<sup>20</sup>. Disease can be spread while bathing, washing or drinking water, or by eating food prepared with unsafe and contaminated water.

The term 'waterborne disease' is reserved largely for infections that are predominantly transmitted through contact with or consumption of contaminated water. Many infections may be transmitted by microbes or parasites that accidentally, possibly as a result of exceptional circumstances, have entered the water. But the fact that there might be an occasional freak infection need not mean that it is useful to categorize the resulting disease as "waterborne".

Waterborne diseases account for an estimated 3.6% of the total disability-adjusted life year (DALY) global burden of disease, and cause about 1.5 million human deaths annually. The WHO estimates that 58% of that burden, or 842,000 deaths per year, is attributable to a lack of safe drinking water, sanitation and hygiene (WASH).

Various forms of waterborne diarrheal disease are the most prominent examples dramatically risking the lives of children in developing countries.

#### Effects of Open Defecation

Water pollution is the contamination of water bodies, usually as a result of human activities. Open defecation is a source of water pollution — rain flushes feces that are dispersed in the environment into surface water or unprotected wells.

## In 2014, WHO found that **open defecation was a leading cause of diarrheal death.**

An average of 2,000 children under the age of five die every day from diarrhea.

Diarrhea and other water-related problems are associated with ingesting and being exposed to human waste (as a result of open defecation) found in waterways and rivers. In urban areas, human waste can find its way in drainage systems that are usually meant to convey rainwater into natural waterways.

Human waste is therefore carried into the water system. As a consequence, the contaminated water ends up in the main water source thus making people highly vulnerable to waterborne diseases such as cholera, typhoid, and trachoma.

### Socio-economic Impact

Waterborne diseases have a significant impact on a nation's economy. People afflicted with a waterborne disease are usually confronted with related costs and not seldom with a huge financial burden. This is especially the case in less developed countries where most illnesses are caused by waterborne diseases. The financial losses are mostly caused by medical treatment and cost of medication cost, transportation expenses, special food, and by the loss of manpower.

Illnesses can cause short-term and long-term damage to

### **National Status**

The rainy season increases the risk of acquiring waterborne diseases such as typhoid fever, cholera, leptospirosis, and hepatitis A.

Typhoons and heavy rains may cause flooding which, in turn, can potentially increase the transmission of waterborne diseases, or diseases transmitted through water contaminated with human or animal waste.

Among the various waterborne diseases, DOH has identified the following as the most prevalent across the country:

- Diarrhea is the frequent discharge of watery feces from the intestines, sometimes containing blood and mucus. This may last a few days, or several weeks, because of an infection as in persistent diarrhea. Persistent diarrhea may result in severe dehydration and shock. Severe diarrhea may be life-threatening due to fluid loss particularly in infants and young children, the malnourished and people with impaired immunity.
- Cholera is an infectious disease that causes severe watery diarrhea, which can lead to dehydration and even death if untreated. It is caused by eating food or drinking water contaminated with a bacterium called *Vibrio cholera*.
- Typhoid is an acute illness associated with fever caused by the Salmonella enterica serotype Typhi bacteria. It can also be caused by Salmonella Paratyphi, a related bacterium that usually causes a less severe illness. The bacteria are deposited in water or food by a human carrier and are then spread to other people in an area.
- Schistosomiasis is a disease caused by parasitic flatworms called schistosomes. The urinary tract or the intestines may be infected. Its symptoms include abdominal pain, diarrhea, bloody stool, or blood in the urine. Those who have been infected for a long time may experience liver damage, kidney failure, infertility, or bladder cancer. The disease is contracted by people using or coming into contact with unclean water contaminated with the parasites. These parasites are released from infected freshwater snails.

The incidence of these waterborne diseases in 2015 are in Table 9.

| Table 9: I | Number of | Cases | of Waterborne | Diseases, | 2015 |
|------------|-----------|-------|---------------|-----------|------|
|------------|-----------|-------|---------------|-----------|------|

|                        |              |                             |                      | ·                                  |
|------------------------|--------------|-----------------------------|----------------------|------------------------------------|
| Country /<br>Region    | Chol-<br>era | Acute<br>Watery<br>Diarrhea | Schistoso-<br>miasis | Typhoid<br>and<br>Paraty-<br>phoid |
| Philippines            | 86           | 129,544                     | 1,843                | 11,366                             |
| llocos                 | -            | 22,147                      | -                    | 2,550                              |
| Cagayan Valley         | 5            | 10,294                      | -                    | 1,312                              |
| Central Luzon          | 1            | 1,969                       | -                    | 35                                 |
| CALABARZON             | 7            | -                           | 1                    | 97                                 |
| MIMAROPA               | -            | -                           | -                    | 58                                 |
| Bicol                  | 2            | 822                         | 10                   | 93                                 |
| Western<br>Visayas     | -            | 5,681                       | 2                    | 551                                |
| Central Visayas        | -            | -                           | -                    | -                                  |
| Eastern Visayas        | -            | 15,239                      | 263                  | 407                                |
| Zamboanga<br>Peninsula | -            | 1,089                       | 69                   | 1,366                              |
| Northern<br>Mindanao   | -            | 2,818                       | 227                  | 323                                |
| Davao                  | -            | -                           | 125                  | 193                                |
| SOCCSKSARG-<br>EN      | 70           | 22,019                      | -                    | 4,054                              |
| Caraga                 | -            | 6,579                       | 1,146                | 84                                 |
| NCR                    | 1            | 1,797                       | -                    | 29                                 |
| CAR                    | -            | 39,090                      | -                    | 214                                |
| ARMM                   | -            | -                           | -                    | -                                  |
| ARIVIIVI               | -            | -                           | -                    | -                                  |

a country's growth. Microeconomic damage may be due to the financial pressures for medical assistance and the physical deterioration of individuals. On the other hand, macroeconomic effects may be due to absenteeism and reduced or lost productivity. As it is also assumed that certain factors such as global warming, water shortage and the fast growth of population will lead to more new infections, it is worth investigating how these illnesses influence the socio-economic structures of affected regions.

<sup>20</sup> Burden of disease and costeffectiveness estimates, WHO

Source: DOH, 2015 Field Health Services Information System (FHSIS)

5

# **WSS Infrastructure**

## Water Supply

The country's water supply needs are served by various water service providers (WSP) of different management types. Table 10 shows the number of WSPs in the country per management type as registered in NWRB's Listahang Tubig database. The data were also delineated according to the WSPs' levels of service (i.e., Levels I, II, and III). Table 11, on the other hand, gives a brief description of each WSP type.

While the WD data may be found in Listahang Tubig, more updated ones are found in the website and records of LWUA and Philippine Association of Water Districts (PAWD). As of 2017, there were a total of 748 WDs in the country, 517 (or 69%) of which were operational. The first map on the next page plots the existing water districts in the country (operational and non-operational). Some WSPs registered in the Listahang Tubig database provide water supply service coverage at the barangay level.

The second map shows the barangays with Level III water service. For municipalities/cities covered by WDs (but where relevant data are lacking), it is assumed that all barangays are being served by their respective WDs.

#### Table 11: Water Service Providers by Management Type

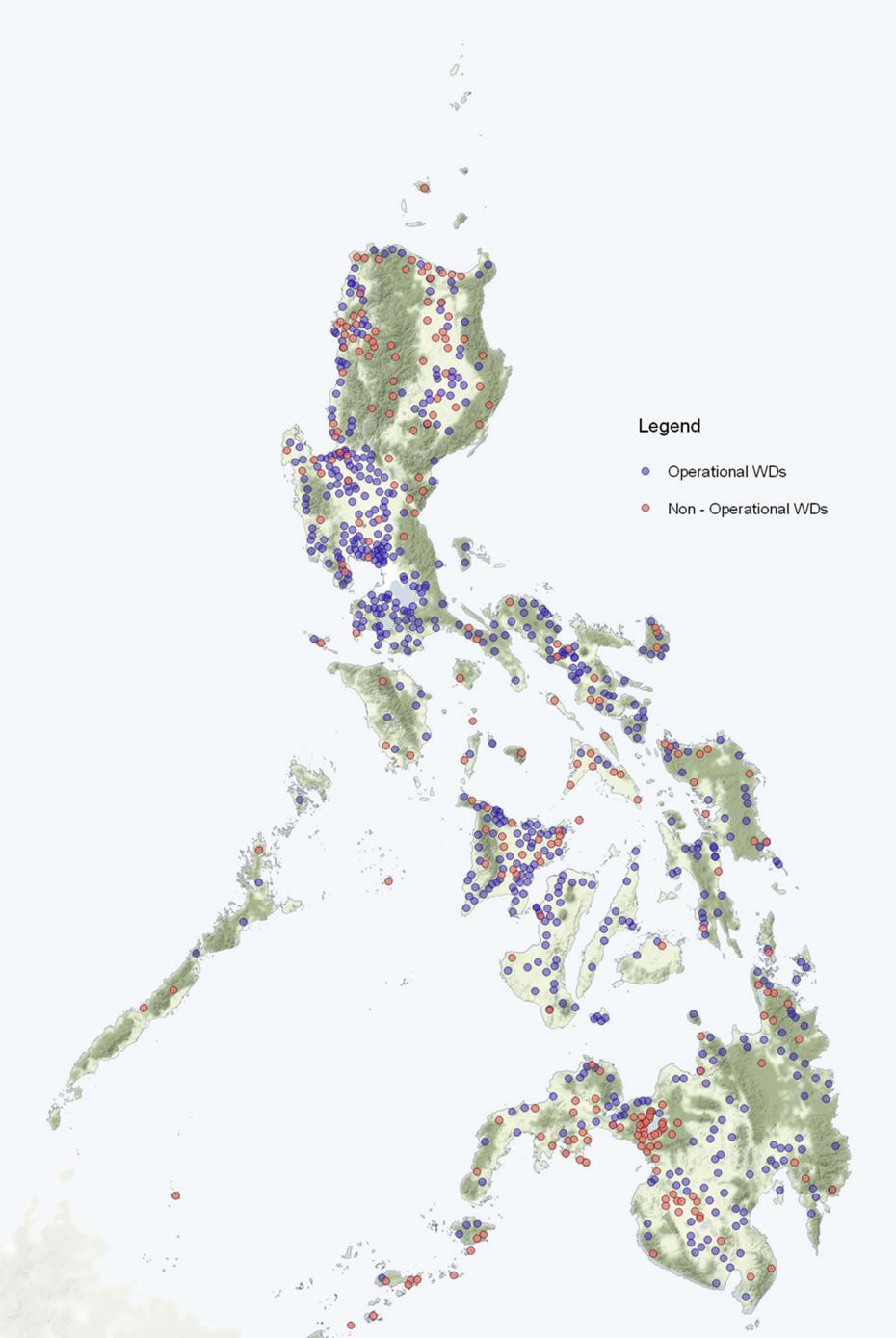
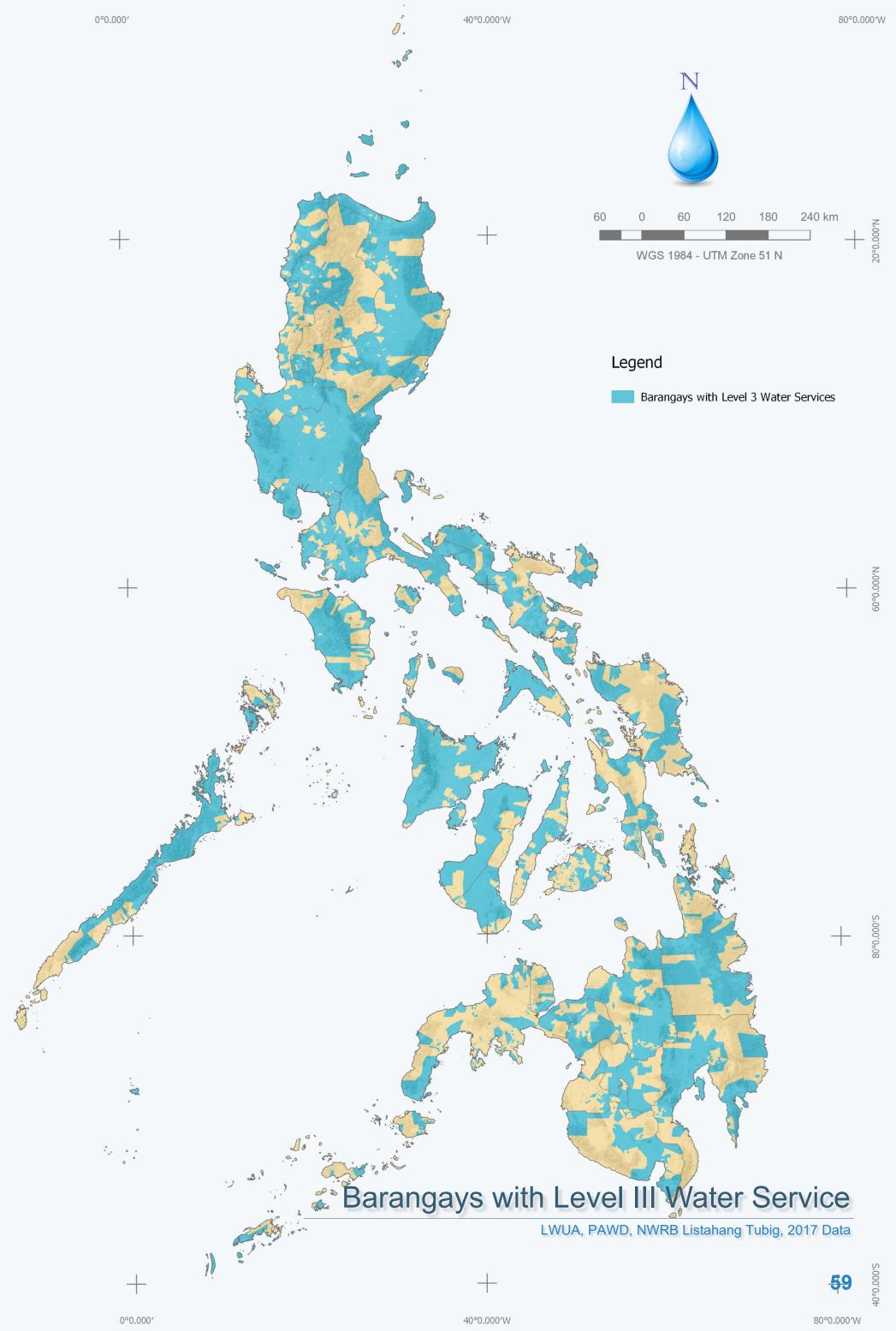

Major Groups Management Type Description A quasi-public corporation formed by the local government unit Water Districts Water District under the Provincial Water Utilities Act for the operation and maintenance of water supply and wastewater management system, which has been issued a Certificate of Conditional Conformance by the Local Water Utilities Administration. LGU-run Utilities LGU-run Utilities A water supply system owned and operated by the provincial, city or municipal government. Community-based Barangay Water and Sanitation Association A non-stock, non-profit organization envisioned to operate and Organizations manage Level I water supply facilities. (BWSA). Rural Water Supply Association (RWSA) A community-based water users' association formed to manage piped water supply systems either with house connections (Level III) or a network of public taps (Level II). An organization formed under the Cooperative Code of the Cooperative Philippines to operate and maintain water supply systems and registered with the Cooperative Development Authority (CDA). Private Utilities Homeowners' Association An organization that operates and maintains a water supply system and is registered with the Securities and Exchange Commission (SEC) or Housing and Land Use Regulatory Board (HLURB) A real estate developer operating a water supply system that Real Estate Developer provides potable water to lot owners within its real estate

Table 10: Service Coverage of Water Service Providers byManagement Type (Listahang Tubig Website)

| Management Type                   | No.    | %    | Level I | Level II | Level III |
|-----------------------------------|--------|------|---------|----------|-----------|
| BWSA                              | 6,621  | 27%  | 2,980   | 2,498    | 1,142     |
| RWSA                              | 1,418  | 6%   | 62      | 619      | 737       |
| Cooperative                       | 403    | 2%   | 46      | 90       | 267       |
| Unnamed Water<br>Service Provider | 7,878  | 32%  | 7,486   | 303      | 89        |
| LGU-Run Utility                   | 4,184  | 17%  | 1,147   | 1,608    | 1,429     |
| Water District                    | 635    | 3%   | 19      | 4        | 611       |
| Homeowners'<br>Association        | 377    | 2%   | 168     | 77       | 132       |
| Real Estate<br>Developer          | 107    | 0%   | 8       | 8        | 91        |
| Industrial Locator                | 45     | 0%   | 3       | 3        | 39        |
| Peddler                           | 211    | 1%   | 108     | 80       | 23        |
| Ship Chandler                     | 4      | 0%   | 1       | 2        | 1         |
| Other Private<br>Operators        | 1,779  | 7%   | 711     | 268      | 800       |
| Refilling Stations                | 1,162  | 5%   | 1,122   | 24       | 15        |
| Grand Total                       | 24,824 | 100% | 13,861  | 5,584    | 5,376     |

| <sup>21</sup> Listahang Tubig Website (http:// |   |
|------------------------------------------------|---|
| listahangtubig.cloudapp.net); accessed         |   |
| December 2018; based on data uploaded          | d |
| by water utilities in 1,470 participating      |   |
| cities/municipalities, out of a total of       |   |
| 1,634.                                         |   |


| development.                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A water service provider serving at least 15 HHs and which is not registered formally with any government agency.                                                                                       |
| An industrial estate operating the water supply system in an economic special zone to provide water to its locators.                                                                                    |
| A non-pipe water service provider or operator extracting water and supplying/delivering water by container.                                                                                             |
| A water supply operator providing water to ships.                                                                                                                                                       |
| Sole proprietorships, corporations and other private entities<br>formed under the general business and corporation laws of the<br>country for the operation and maintenance of water supply<br>systems. |
|                                                                                                                                                                                                         |



# Existing Water Districts

LWUA, PAWD, 2017 Data







## Location of Existing STPs

Ċ.

1)

~

• •

PWSSMP Inventory, 2017 Data

60

40°0.000'S

0°0.000′

-

40°0.000'W

80°0.000′W

## Sanitation

For sanitary toilets and onsite treatment systems to be considered safely managed, wastewater and septage (sludge content of the septic tanks) coming from these systems should be treated and disposed of properly. It is the responsibility of households and communities that toilets and septic tanks be constructed in compliance with the National Building Code. These on-site systems need to be maintained and serviced by a service provider. Sanitation service then means desludging or emptying of septic tanks and provision of sewerage services, sometimes collectively referred to as wastewater management or fecal sludge management service. This service includes collection or conveyance, on-site or off-site treatment, and final disposal of wastewater, fecal sludge, or septage.

Sanitation service providers are principally comprised of WDs, LGU-run water utilities, private sector service providers, and cooperative-run service providers outside Mega Manila. Private service providers are popularly known as Malabanan Pozo Negro. Their services generally remain a private business activity and for-profit. New private players are emerging to provide sanitation services and comply with existing regulations set by DOH and EMB, and other ordinances of the LGUs.

Duly registered private service providers report their activities to the LGUs they serve and the Regional Health Offices of DOH to obtain and renew their Environmental Sanitation Clearance (ESC). By law, service providers can operate only in the areas that are stated and approved in their registration.

As of this writing, there are no known data or surveys of sanitation service providers outside Mega Manila. Unofficially, there are about 36 septage treatment facilities constructed all over the country at various stages of operation — some by LGUs, the rest by WD's.

In Mega Manila, there are a total of 61 septage treatment plants (STP) spread throughout the service areas of two MWSS concessionaires (i.e., Maynilad Water Services Inc., 20, and Manila Water Company Inc., 41).

A rough estimation of performance of service delivery in the country is shown in Table 12 and Table 13.

Septage management is available to the equivalent of 3% of the population outside Mega Manila. With regard to sewerage systems, only 0.10% of the population outside Mega Manila is served.

#### Table 12: Coverage of Septage Management Program

| Areas with Available Cor         | Areas with Available Complete Septage Management Program |                                      |         |  |  |
|----------------------------------|----------------------------------------------------------|--------------------------------------|---------|--|--|
| Area Covered                     | 2015 Covered<br>Population                               | % of Philippine<br>Population (2015) | Remarks |  |  |
| Mega Manila                      |                                                          |                                      | 76.48%  |  |  |
| Total for Mega Manila            | 14,868,425                                               | 14.72%                               |         |  |  |
| Outside Mega Manila              |                                                          |                                      | 3.76%   |  |  |
| Total for Outside<br>Mega Manila | 3,063,088                                                | 3.03%                                |         |  |  |

#### Table 13: Coverage of Sewerage System Services

| Areas with Available Con | nplete Sewerage Sys | stem Services   |  |
|--------------------------|---------------------|-----------------|--|
|                          | 2015 Covered        | % of Dhilipping |  |

| Area Covered                     | Population | % of Philippine<br>Population (2015) | Remarks |
|----------------------------------|------------|--------------------------------------|---------|
| Mega Manila                      |            |                                      | 66.24%  |
| Total for Mega Manila            | 12,877,253 | 12.75%                               |         |
| Outside Mega Manila              |            |                                      | 0.12%   |
| Total for Outside<br>Mega Manila | 101,883    | 0.10%                                |         |



# **WSS Gaps**

## **Issues and Challenges**

Issues and challenges confronting the WSS sector are summarized herein.

Table 14: Issues and Challenges in the Water Supply and Sanitation Sector

| Elements of WSS<br>Sector and its<br>Objective Statements | Issues and Challenges           Water Supply         Sanitation                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | <ul> <li>Some potential water sources are polluted or contaminated.</li> </ul>                                                                                                                                                                                                                                                                                            |
| Natural Resources<br>System                               | <ul> <li>Water sources are insufficient in some areas. Other sources are drying up due to over-extraction or are<br/>sensitive to weather patterns and climate change.</li> </ul>                                                                                                                                                                                         |
| Efficiently Managed<br>Finite Water                       | <ul> <li>Assuming it is business as usual, the country will experience high water stress owing to high total water<br/>withdrawal against projected renewable water resources by 2040.</li> </ul>                                                                                                                                                                         |
| Resources and Water<br>Ecosystem                          | <ul> <li>Rainfall variability and extreme weather events (usually attributed to climate change) make water resource<br/>management more difficult.</li> </ul>                                                                                                                                                                                                             |
|                                                           | <ul> <li>Excessive groundwater extraction has led to saline intrusion and groundwater-related subsidence.</li> </ul>                                                                                                                                                                                                                                                      |
| Socio-Economic                                            | <ul> <li>Increasing population and economic growth increase water demand and generation of waste and wastewater.</li> </ul>                                                                                                                                                                                                                                               |
| System                                                    | <ul> <li>Increasing temperature (climate change) will increase water usage.</li> </ul>                                                                                                                                                                                                                                                                                    |
| WSS Promoting<br>Socio-Economic                           | <ul> <li>Climate change increases the risk of waterborne diseases and transmission of malaria.</li> </ul>                                                                                                                                                                                                                                                                 |
|                                                           | <ul> <li>The quality of water resources is deteriorating because of unmanaged wastewater entering the water ecosystem.</li> </ul>                                                                                                                                                                                                                                         |
| Use of and Impact on Water                                | <ul> <li>There is inadequate or a lack of awareness of and concern about the effects of unmanaged waste and<br/>wastewater on watersheds, water sources, and water ecosystems.</li> </ul>                                                                                                                                                                                 |
| Responsible Use and Balanced Demand                       | <ul> <li>There is a lack of appropriate technologies, or application or use thereof, to optimize the use of water<br/>resources.</li> </ul>                                                                                                                                                                                                                               |
| and Supply                                                | <ul> <li>There is no clear policy promoting water demand management (WDM) in order to maximize available water<br/>supply. This includes water efficiency and water conservation for all users, using the right quality of water for<br/>its intended use, the use of economic instruments and other incentives/disincentives to effect behavioral<br/>change.</li> </ul> |
|                                                           | There is no single body focused on water supply and sanitation resulting in a fragmented sector with multiple water institutions and no clearly defined institutional roles to address sanitation issues.                                                                                                                                                                 |
| Administrative and<br>Institutional System                | There is no apex body to oversee the whole cycle with respect to the use of the country's water resources – from the source, to how much and in what manner water is used, to sanitation and treatment, and back to the source. Also, the inadequacy in numbers of river basin organizations makes it difficult to carry out a holistic planning approach.                |
| Enabling<br>Administrative and<br>Institutional           | <ul> <li>NWRB does not have an appropriate institutional structure to complement its mandate as a policy-making<br/>body, water resource regulator, and economic regulator.</li> </ul>                                                                                                                                                                                    |
| Arrangements                                              | <ul> <li>WSS data gathered by the PSA are limited.</li> </ul>                                                                                                                                                                                                                                                                                                             |
|                                                           | <ul> <li>LGUs lack the capacity and capability to perform their obligation of ensuring the reliability of WSS services as<br/>per the Local Government Code (LGC).</li> </ul>                                                                                                                                                                                             |
| Policies,<br>Regulations, and<br>Management               | The sector's economic regulatory framework is severely fragmented, poorly enforced, and has very limited coverage. Also, there is no regulatory oversight on JV arrangements.                                                                                                                                                                                             |
| WSS-related Policies,                                     | Poor enforcement of and compliance with policies and laws (i.e., with the Clean Water Act, and other resource-, economic-, environment-related policies) can be observed.                                                                                                                                                                                                 |
| Regulations, and<br>Management                            | The sector lacks an independent water agency with the power to grant and revoke licenses, as well as the authority to set standards and targets for private and public WSPs.                                                                                                                                                                                              |
|                                                           | <ul> <li>WSS data and information used in decision making are limited, scattered among the different government<br/>agencies/offices that have water-related functions, and poorly managed and monitored.</li> </ul>                                                                                                                                                      |
|                                                           | Implementation, monitoring, and management of WSS services and infrastructure are sorely lacking.                                                                                                                                                                                                                                                                         |
|                                                           | There have been no directives or strategies by which to translate PDP/SDG targets and commitments into local programs and projects.                                                                                                                                                                                                                                       |
|                                                           | Issuance of water rights is not regulated. In addition, speculators hoard water permits.                                                                                                                                                                                                                                                                                  |

- Sanitation interventions are very inadequate, not sustainable and unbalanced in terms of implementation.
- Many WSPs have inadequate management and O&M capability.
- Water rates are too low in some areas and yield no cost recovery.
- Access to potential technologies is restrictive.
- Water is being used as a political commodity. Some LGUs and WDs are caught up in political conflict or burdened by interference from politicians, thus affecting the interest of water consumers.
- Investments in WSS sector are insufficient.

WSS Infrastructure

and Services

Sustainable WSS

Infrastructure and Services

Resilient, Responsive, and

- Water supply systems (or structures) are not properly designed, constructed, operated, and maintained.
- There is a lack of water supply structures to optimize available resources, ensure good water quality and sanitation, or provide access to safe water.
- Funds are inadequate and access to financing is difficult, yet there are programs and projects (NSSMP, LWUA WD Development Sector Project) with very few takers.
- Some WSPs are not operational and sustainable.
- Some WSPs, including WDs and LGU-run utilities, fail to serve barangays within their franchise area and meet set standards in water supply and service delivery.
- Some WSPs are unfamiliar with new technologies and updated techniques.

### Vision

"By 2030, all Filipinos will have access to sustainable and affordable safe water supply, and to adequate safely managed sanitation services."

## Sector Goals and Outcomes: Benchmarks and Targets

Setting the direction towards the national targets and commitments (see Table 15), the PWSSMP's vision is set on the universal access of WSS services by 2030. Thus, it also aligns the direction towards achieving the WSS targets laid out in PDP by 2022.

The normative content of the human right to water supply and sanitation services must also be met in the achievement of the national targets. These normative content would include availability, physical accessibility, quality and safety, affordability, and acceptability. While it is important that the populace is given access to WSS facilities, it is equally essential to ensure that what they have is 'good access.' Moving forward, it is recommended that the proposed benchmarks and key performance indicators (shown in Tables 16 and 17) be monitored and targeted by government agencies and WSPs alike to achieve the WSS sector's goals.

WSS sector targets per region shall be discussed in detail in the regional subsections of this databook.

#### Table 16: Proposed Water Supply Sector Benchmarks

| Key Performance<br>Indicator (KPI)                                            | Source of<br>Data              | 2015<br>Baseline | 2022<br>Target | 2030<br>Target |
|-------------------------------------------------------------------------------|--------------------------------|------------------|----------------|----------------|
| Percentage of<br>households with no<br>access to safe water                   | PSA                            | 12.8%            | 6.6%           | 0.0%           |
| Percentage of<br>households with access<br>to Level III systems               | PSA, Regional<br>Consultations | 43.6%            | 58.3%          | 77.1%          |
| Percentage of<br>households with access<br>to Level II systems                | PSA, Regional<br>Consultations | 11.2%            | 15.0%          | 14.0%          |
| Percentage of<br>households with access<br>to Level I systems                 | PSA, Regional<br>Consultations | 32.4%            | 20.1%          | 8.9%           |
| Percentage of WSPs<br>providing water that<br>meets the PNSDW<br>requirements | No data<br>available           |                  |                |                |
| Percentage of WSPs with at least 19 hours per day                             | Listahang<br>Tubig             | 19<br>hours      |                |                |

#### Table 15: Sector Goals, Benchmarks

Hierarchy of

Objectives

Outcomes

Goal

|    |    | National Targets and Commitments                                                                                                                                                | Benchmark                     | Source of<br>Data   |
|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|
|    |    | Universal (100%) and equitable access to safe and affordable drinking water by 2030                                                                                             | 91.67%                        | NDHS, 2017          |
|    |    | Universal access to adequate and equitable sanitation by 2030                                                                                                                   | 69%                           | NDHS, 2017          |
|    |    | Increase in the percentage of households with access to safe water supply to 95% by 2022                                                                                        | 87.70%                        | FIES, 2015          |
|    |    | Increase in the percentage of households with access to basic sanitation to 97% by 2022                                                                                         | 73.80%                        | FIES, 2015          |
|    |    | By 2020, all LGUs (1,634) will have developed septage management systems.                                                                                                       | 3.18%<br>(52 of 1,634)        | PWSSMP<br>Inventory |
|    |    | By 2020, the 17 highly urbanized cities (HUCs) will have developed sewerage systems.                                                                                            | 6%<br>(1 of 17)               | PWSSMP<br>Inventory |
|    |    | By 2020, approximately 43.6 million people will have had access to septage treatment facilities.                                                                                | 41.12%<br>(17.93 M of 43.6 M) | PWSSMP<br>Inventory |
|    |    | By 2020, approximately 3.2 million people will have had access to sewerage treatment facilities.                                                                                | 405%<br>(12.98 M of 3.2M)     | PWSSMP<br>Inventory |
|    |    | By 2020, ₱26.3 billion will have been invested in sanitation improvement projects.                                                                                              | No data available             |                     |
|    |    | By 2020, approximately 346 million kilograms of BOD<br>will have been diverted from the environment per year<br>as a result of the sewerage and septage management<br>projects. | No data available             |                     |
| nc | 20 | 20 PDP 2017 2022 Clean Water Act 2004                                                                                                                                           |                               |                     |

Legend: SDG 2030 PDP 2017-2022 Clean Water Act 2004

#### **Table 17: Proposed Sanitation Sector Benchmarks**

| 1                                                                   |                      |               |                                                                                      |             |
|---------------------------------------------------------------------|----------------------|---------------|--------------------------------------------------------------------------------------|-------------|
| Key Performance Indicator (KPI)                                     | Source of Data       | 2015 Baseline | 2022 Target                                                                          | 2030 Target |
| Percentage of households with access to improved facilities         | DOH/PSA              | 94%           | 100%                                                                                 | 100%        |
| Percentage of households practicing open defecation;                | DOH/PSA              | 4%            | 0%                                                                                   | 0%          |
| Percentage of households with septic tanks (on-site system)         | DOH/PSA              | 74%           | 97%                                                                                  | 100%        |
| Percentage of households with access to septage collection services | DOH/PSA              | 17%           | 69%                                                                                  | 100%        |
| Percentage of households with access to a sewerage system           | DOH/PSA              | 12%           | 23%                                                                                  | 60%         |
| Percentage of households connected to a sewerage system             | DOH/PSA              | 3%            | 20%                                                                                  | 50%         |
| Percentage of HUCs with sewerage service provision                  | DOH/PSA              | 53%           | 94.12%                                                                               | 100%        |
| Percentage of non-HUCs with septage service provision               | DOH/PSA              | 0.73%         | 61.20%                                                                               | 100%        |
| Rate of morbidity caused by water-<br>related illnesses and disease | DOH/PSA              | 12,833        | An annual drop<br>of 10% to 20%<br>is ideal with<br>improvement of<br>water quality. | 21.00%      |
| Volume of Biochemical Oxygen<br>Demand removed from the ecosystem   | LGU/DENR-EMB/<br>DOH | 65.4 Tons (T) | 233.2 T                                                                              | 514.1 T     |

| of water supply service<br>Percentage of Level III                                                             | No data              | per day | Volume of wastewater collected and treated $(m^3)$                                                          | LGU/DENR-EMB/<br>DOH | 2.95 T          | 3.32 T                | 3.81 T              |
|----------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-----------------------|---------------------|
| WSPs achieving 7 m<br>minimum water pressure                                                                   | available            |         | Percentage of treatment plant capacity utilization                                                          | LGU/DENR-EMB/<br>DOH | utilization sta | and sewerage treatr   | st year and reaches |
| Percentage of WSPs that                                                                                        | No data              |         |                                                                                                             |                      | full capacity   | toward the end of the | e 3-5 year cycle.   |
| have sufficient water<br>sources to serve<br>franchise beneficiaries                                           | available            |         | Percentage of WSPs complying with national standards for sanitation (e.g., DENR, DOH, and local government) | LGU/DENR-EMB/<br>DOH | 17%             | 67%                   | 100%                |
| Percentage of Level III<br>WSPs with an average<br>per capita consumption<br>equal to or less than 120<br>lpcd | No data<br>available |         |                                                                                                             |                      |                 |                       |                     |

# Addressing the Gaps

## Proposed Projects and Investments

Based on the WSS Issues and Challenges, eight (8) reform agenda were identified thus setting the focus on prioritizing project interventions for the sector. Figure 21 illustrates the PWSSMP Results Framework with the 8 reform agenda. These are discussed in detail in the Master Plan (Volume 1).

Complementing the Reform Agenda (soft components) are the Priority Programs (hard components) consisting of (1) WSS Potential Projects and (2) Identified Projects.

#### **WSS** Potential Projects

WSS potential projects shall be based on the total infrastructure investments needed towards achieving the 2022 and 2030 sector targets and commitments. Table 18 shows in detail the sector's total budget requirements. Derivations of these costs are shown in the Master Plan. Breakdown per region, on the other hand, shall be discussed in the regional subsections of this databook.

#### **Identified Projects**

In the course of the study, lists of potential and pipeline WSS projects from various agencies and LGUs were collected. These are summarized by agency, major

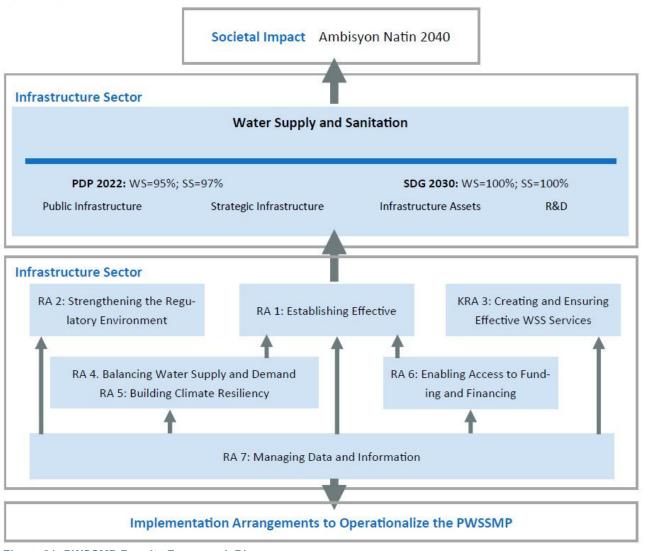



Figure 21: PWSSMP Results Framework Diagram

**Table 18: Investment Requirements for Potential Projects** 

| Region | Population | Access<br>WS Gap | Access<br>Sanitation<br>Gap | Total Budget<br>Requirement<br>(In PhP Million) | Budget Requirements<br>for 2022<br>(In PhP Million) | Budget Requirements<br>for 2030<br>(In PhP Million) |
|--------|------------|------------------|-----------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|--------|------------|------------------|-----------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|

| CAR       | 1,722,006  | 137,516    | 523,458    | 20,418    | 12,415  | 8,003   |
|-----------|------------|------------|------------|-----------|---------|---------|
| Region 1  | 5,026,128  | 210,460    | 271,458    | 57,674    | 37,363  | 20,311  |
| Region 2  | 3,451,410  | -          | 92,934     | 38,446    | 27,389  | 11,057  |
| Region 3  | 11,218,177 | 201,026    | 756,951    | 106,659   | 76,431  | 30,228  |
| Region 4A | 14,414,774 | 1,659,631  | 926,875    | 213,918   | 148,721 | 65,197  |
| Region 4B | 2,963,360  | 674,207    | 520,886    | 33,410    | 22,733  | 10,677  |
| Region 5  | 5,796,989  | 1,407,084  | 672,902    | 51,574    | 33,026  | 18,549  |
| Region 6  | 7,536,383  | 1,457,642  | 1,186,720  | 81,691    | 57,366  | 24,325  |
| Region 7  | 7,396,898  | 2,609,319  | 1,229,842  | 101,637   | 75,299  | 26,339  |
| Region 8  | 4,440,150  | 594,882    | 1,314,215  | 54,415    | 36,681  | 17,734  |
| Region 9  | 3,629,783  | 832,841    | 245,591    | 42,683    | 27,156  | 15,527  |
| Region 10 | 4,689,302  | 545,846    | 260,214    | 59,744    | 40,318  | 19,426  |
| Region 11 | 4,893,318  | 679,003    | 396,798    | 55,758    | 35,705  | 20,053  |
| Region 12 | 4,545,276  | 265,247    | 610,714    | 66,251    | 45,842  | 20,409  |
| Region 13 | 2,596,709  | 214,780    | 431,633    | 31,364    | 22,711  | 8,653   |
| ARMM      | 3,781,387  | 1,760,648  | 1,310,520  | 52,539    | 34,493  | 18,046  |
| Total     | 88,102,050 | 13,250,132 | 10,751,711 | 1,068,186 | 733,657 | 334,529 |
|           |            |            |            |           |         |         |



40°0.000′

infrastructure type (i.e., water supply, sanitation), year of commencement, and total budget in Table 19. A breakdown of these projects, on the other hand, is shown in the regional subsections.

#### **Priority Projects**

To ensure that funded infrastructure projects shall contribute to the timely achievement of national targets, the prioritizing framework is as follows:

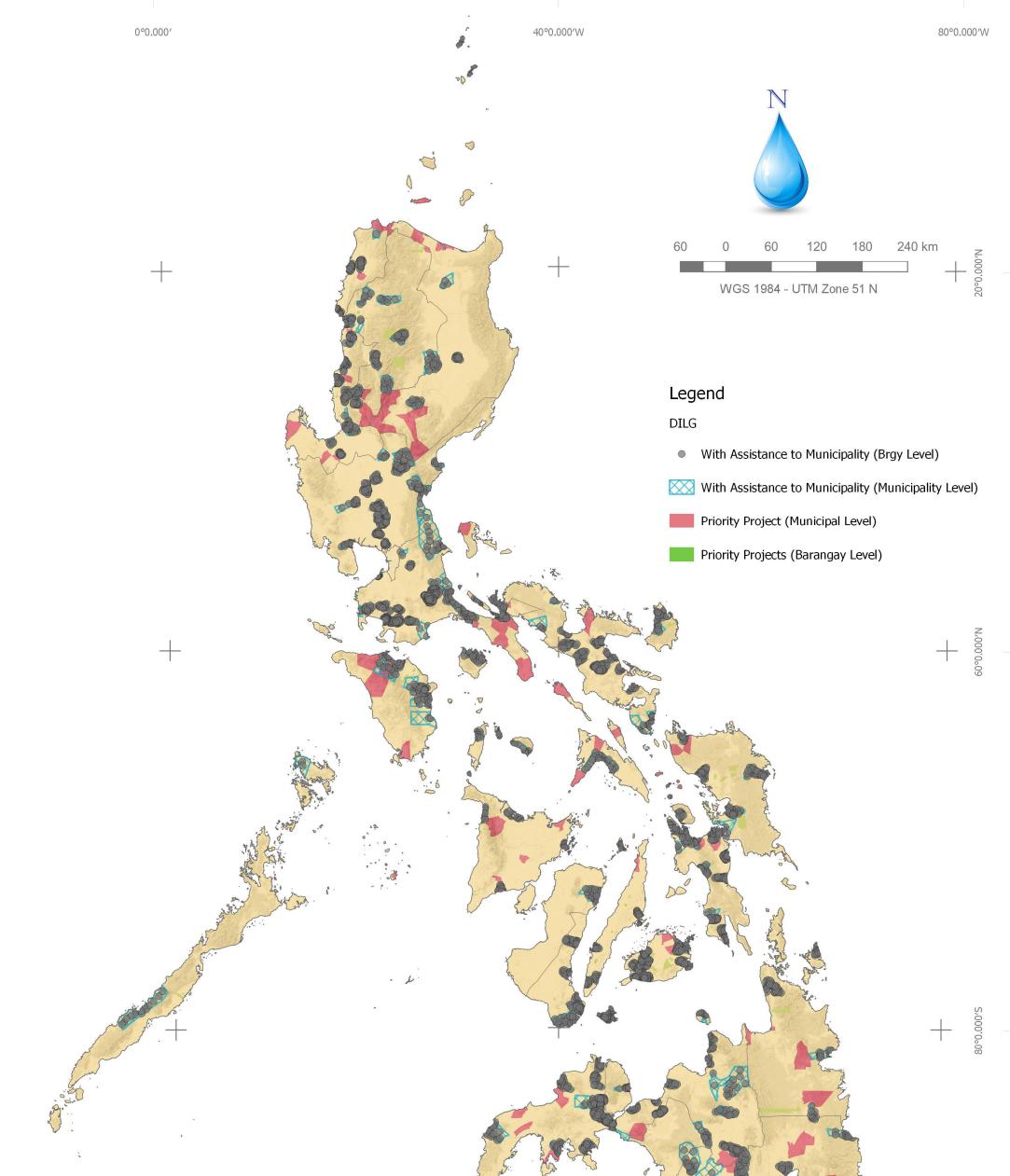
- Higher priority is given to WSS infrastructure where 100% of target beneficiaries belong to: (1) households without access to safe water supply; and (2) households without access to basic sanitation.
- Higher priority is given to WSS infrastructure deemed feasible and ready for implementation.

PWSSMP has identified priority and pipeline projects that shall be funded in different stages of development for 2019 to 2020. Data on these projects included in the Priority Investment Program (PIP) were gathered from LWUA and DILG, among other government agencies.

DILG's pipeline projects under Salintubig, Bottom-up Budgeting (BUB) and Assistance to Municipalities (AM) for 2019 were also considered.

As of 2018, NEDA has bid feasibility studies for Mandamus, non-Mandamus, high NRW, and nonoperating WDs. The WDs with expected complete concept design and feasibility studies by 2019 are included in the pipeline projects for 2020 (mobilization). Also included in NEDA's Project Development and Other Related Studies (PDRS) Fund is the conduct of feasibility studies and/or concept designs for bulk water supply in selected provinces in the country. DILG will execute the project as its implementing agency (IA).

The maps on the next pages show the municipalities covered by these projects.


#### Table 19: Investment Requirements for Identified Projects

| gency/Region      | Infrastructure<br>Type | Project Cost<br>Implemented in<br>2019-2023 | Project Cost<br>Implemented in<br>2024-2030 | HH Beneficiaries                                                                                                | Percent Population<br>Covered |
|-------------------|------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|
|                   | WS                     | 1,045,348,178.00                            | } _ } • .                                   | 1,667,138                                                                                                       | 8%                            |
| DILG              | S                      | 188,120,000.00                              | ι. <u>-</u> (                               | 322,049                                                                                                         | 2%                            |
| DILG<br>alintubig | WS                     | 1,549,641,000.00                            |                                             | 863,992                                                                                                         | 4%                            |
| LWUA              | WS                     | 10,740,560,000.00                           | Q                                           | 4,748,123                                                                                                       | 24%                           |
|                   | WS                     | 2,446,676,640.00                            | 26,795,000.00                               | s (                                                                                                             | ·                             |
| CAR               | S                      | 1,705,802,100.00                            | 3,691,462,000.00                            | 448,430                                                                                                         | 100%                          |
|                   | WSS                    | 2,000,000.00                                |                                             | in the second |                               |
|                   | WS                     | 7,328,294,801.35                            | 1,003,845,900.80                            | 1 million                                                                                                       | · · · · ·                     |
| Region 1          | S                      | 100,000,000.00                              | 8,950,884,500.50                            | 1,241,079                                                                                                       | 100%                          |
| 5                 | WSS                    | 3,000,000.00                                |                                             | The second second second                                                                                        | · 1                           |
|                   | WS                     | 3,014,049,000.00                            | 13,944,709,000.00                           | 1                                                                                                               |                               |
| Region 2          | S                      | 1,508,000,000.00                            | 1,263,120,000.00                            | 845,036                                                                                                         | 96%                           |
|                   | WS                     | 34,342,093,000.00                           | 1,935,100,000.00                            | The former                                                                                                      | 1 / 1 rd                      |
| Region 3          | S                      | 210,000,000.00                              | 57,625,816,000.00                           | 2,174,945                                                                                                       | 72%                           |
|                   | WSS                    | 2,502,000.00                                | 67,000,000.00                               |                                                                                                                 |                               |
| Region 4A         | WS                     | 2,052,010.00                                | -                                           | 1,547,066                                                                                                       | 39%                           |
| tegion 4/t        | WS 2                   | 4,104,450,000.00                            | 1,916,950,000.00                            | 1,047,000                                                                                                       |                               |
| Region 4B         | s                      | 6,182,000,000.00                            | 383,980,730.00                              | 765,497                                                                                                         | 100%                          |
| Region 4D         | wss                    | 8,000,000.00                                | 000,000,700.00                              |                                                                                                                 | 10070                         |
|                   | WS                     | 3,505,270,000.00                            | 3,878,586,000.00                            | 1,341,295                                                                                                       | J                             |
| Region 5          | S                      | 51,100,000.00                               | 7,368,140,000.00                            |                                                                                                                 | 100%                          |
| Itegion 5         | WSS                    | 80,050,000.00                               | 200,000.00                                  | 1,041,290                                                                                                       |                               |
|                   | WSS                    | 80,030,000.00                               | 10,000,000.00                               |                                                                                                                 |                               |
| Region 6          | S S                    | -                                           | 80,000,000.00                               | 474,538                                                                                                         | 25%                           |
| \$ 5              | WS                     | 1,261,910,000.00                            | 2,562,899,000.00                            | 1,412,468                                                                                                       | 74%                           |
| Region 7          | WSS                    | 35,000,000.00                               | 2,302,099,000.00                            |                                                                                                                 |                               |
|                   | WSS                    | 730,500,000.00                              | - 1,401,677,420.45                          |                                                                                                                 |                               |
| Pogion 8          | S                      | 730,300,000.00                              | 338,000,000.00                              | 000 707                                                                                                         | 82%                           |
| Region 8          | WSS                    | 1,000,000.00                                | 556,000,000.00                              | 999,767                                                                                                         | 02 %                          |
| ¥ •               |                        | 370,900,000.00                              | -                                           | 1 PR                                                                                                            | 5                             |
| Decien 0          | WS                     |                                             | 21,876,771,600.00                           | 070 000                                                                                                         | 070/                          |
| Region 9          | S                      | 2,000,000.00                                | 905,971,520.00                              | 870,600                                                                                                         | 97%                           |
|                   | WSS                    | 155,835,000.00                              | - 8,892,800,000.00                          |                                                                                                                 | k                             |
| Pagion 10         | WS                     | 8,556,430,000.00                            |                                             | 000 170                                                                                                         | 700/                          |
| Region 10         | S S                    | 4,392,481,420.00                            | 2,299,036,910.00                            | 828,170                                                                                                         | 70%                           |
|                   | WSS                    | 257,100,100.00                              | 15,000,000.00                               |                                                                                                                 |                               |
| Region 11         | WS                     | 5,172,767,764.00                            | 792,794,028.00                              | 1,154,438                                                                                                       | 87%                           |
|                   | S                      | 5,273,572,000.00                            | 541,992,000.00                              |                                                                                                                 | X                             |
| Decion 10         | WS                     | 32,160,000.00                               | 474,946,000.00                              | 1 000 004                                                                                                       | 000/                          |
| Region 12         | S°                     | 170,000.00                                  | 91,420,000.00                               | 1,000,291                                                                                                       | 82%                           |
|                   | WSS                    | 790,280,000.00                              | 64,000,000.00                               |                                                                                                                 |                               |
| Region 13         | WS                     | 24,900,000.00                               | 8,512,441,000.00                            | 548,645                                                                                                         | 87%                           |
|                   | S                      | -                                           | 3,104,550,000.00                            |                                                                                                                 |                               |
|                   | WS                     | 4,331,952,110.00                            | 10,691,005,026.67                           | 705 440                                                                                                         | 4000/                         |
| ARMM              | S                      | 11,742,740,000.00                           | 8,060,535,614.00                            | 725,449                                                                                                         | 100%                          |
|                   | WSS                    | 12,800,000.00                               | 41,600,000.00                               |                                                                                                                 |                               |
|                   | WS                     | 75,224,405,325.35                           | 77,921,319,975.91                           |                                                                                                                 |                               |
| Subtotal          | S                      | 31,167,865,520.00                           | 94,704,909,274.50                           | _                                                                                                               |                               |
|                   | WSS                    | 1,347,567,100.00                            | 187,800,000.00                              |                                                                                                                 |                               |
| Total             |                        | 107,739,837,945.35                          | 172,814,029,250.42                          | 16,377,714                                                                                                      | 72%                           |

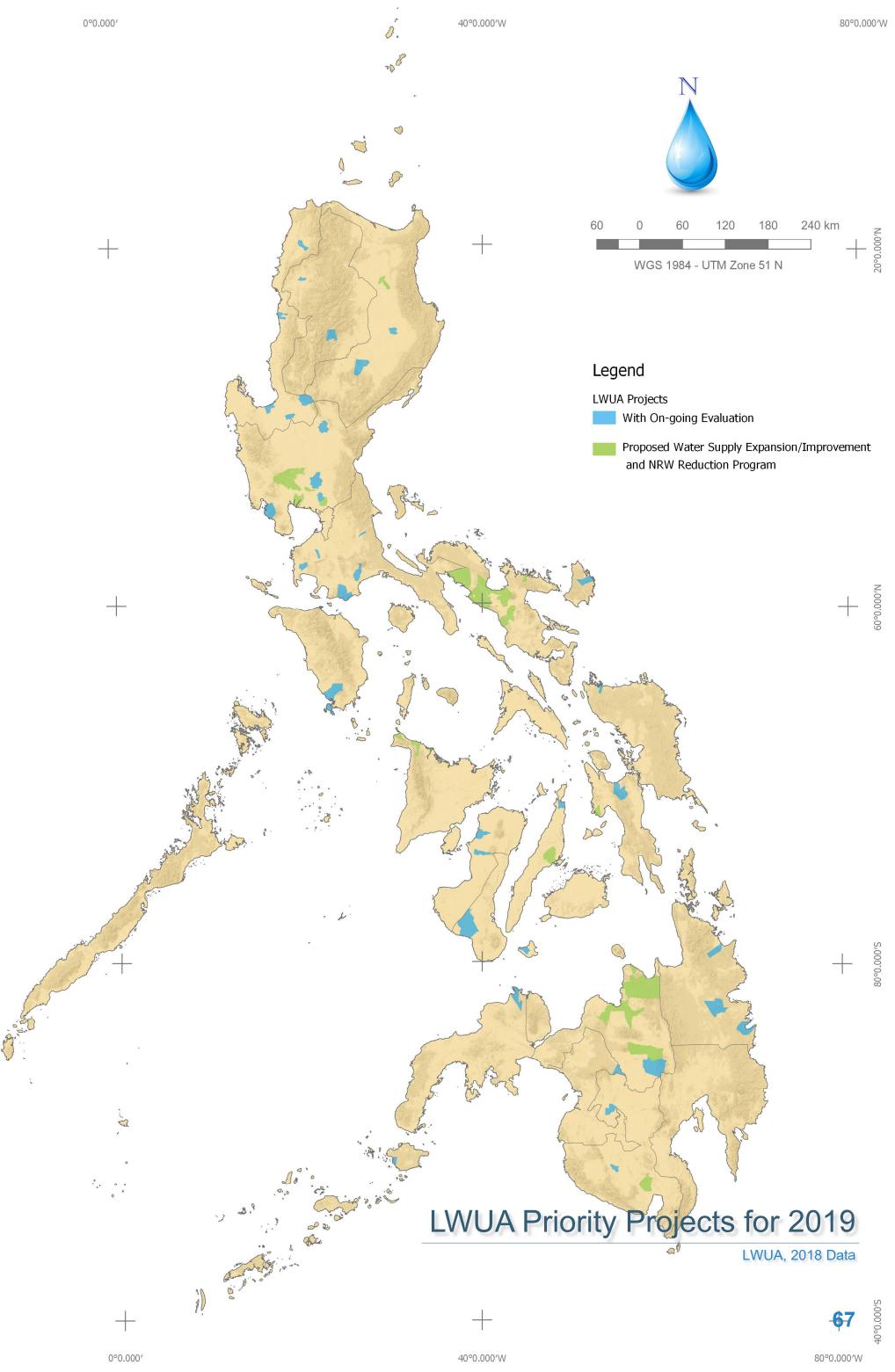
**65** 000 0.04

0°0,000

40°0.000'W



## **DILG Projects for 2019**


To be funded by Salintubig, Bottom-up Budgeting (BUB) and Assistance to Municipalities (AM)

2)

66

00

80°0.000′W



80°0.000'E

## Strategic Interventions

Apart from the activities and reforms proposed in the eight key agenda (discussed in detail in the Master Plan), a number of other strategic interventions to achieve the WSS sector targets in 2022 and 2030 are discussed below. These shall help ensure that the proposed infrastructure projects are realized and are readily applicable and adoptable at the local level.

These interventions shall also be discussed in detail and shall be region-specific in the subsequent regional roadmaps included in this Volume.

#### Water Supply

The proposed strategic interventions for the water supply sector are presented in Table 20.

To meet the targets for access and coverage as well as the normative content of water (service standards), the capital investments needed in 2022 and 2030 are listed in Table 21.

| Access to Safe<br>Water                                               | Planning and<br>Development                                                                                                                                                              | Service<br>Provision                                                                                                                                                                                                                                                                                                                                                                                                            | Regulation                                                                                                                                                                                                                                                        | Promotion                                                                       |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 95% Access to<br>Safe Water by<br>2022<br>Universal Access<br>by 2030 | <ul> <li>Planning, program or<br/>project design</li> <li>Establishing labs and<br/>water quality testing<br/>centers</li> <li>Lobbying for the Re-<br/>gional WSS Masterplan</li> </ul> | <ul> <li>M&amp;E expansion</li> <li>Rehabilitation/Non-revenue water (NRW) reduction maintained at 20% of total production</li> <li>Integration/Amalgamation</li> <li>Automation</li> <li>Automation</li> <li>Residuals management</li> <li>Mitigation</li> <li>Water potability maintained at all times</li> <li>Providing 24/7 water supply service</li> <li>Achieving 100% coverage</li> <li>Residuals management</li> </ul> | <ul> <li>Water resources protection</li> <li>Arbitration</li> <li>Environmental and social safeguards</li> <li>Compliance with PNSDW 2017</li> <li>Close monitoring of Joint Agreement</li> <li>Compliance training from DOH</li> <li>Resource studies</li> </ul> | <ul> <li>Willingness to connect<br/>and pay</li> <li>Demand creation</li> </ul> |

#### Table 20: Proposed Strategic Interventions for Water Supply

| Service Level | 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level III     | <ul> <li>Water source assessment and development</li> <li>Construction of water treatment facilities</li> <li>Distribution network expansion</li> <li>Provision of service connections</li> <li>NRW reduction program</li> <li>Watershed and water resources protection, management and development</li> <li>Development of a Water Safety Program</li> <li>Adoption of a rainwater harvesting program</li> <li>Establishment of adequately equipped laboratory testing centers in strategic areas to serve all service levels clientele</li> </ul> | <ul> <li>Water source assessment and development</li> <li>Construction of water treatment facilities</li> <li>Distribution network expansion</li> <li>Provision of service connections</li> <li>NRW reduction program</li> <li>Watershed and water resources protection, management and development</li> <li>Development of a Water Safety Program</li> <li>Adoption of a rain water harvesting program</li> <li>Automation of operations and major services</li> </ul> |
| Level II      | <ul> <li>Rehabilitation of existing water supply system to<br/>upgrade it to Level III</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Rehabilitation of water supply system to upgrade it to Level III</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |
| Level I       | <ul> <li>Upgrading to "safe level" those water sources<br/>found "unsafe"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Adoption of a rain water harvesting program in<br/>areas not reached by Levels II and III services</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |

#### Sanitation

Table 22 presents specific strategic interventions for varying levels of access coverage for improved sanitation. This indicates that proposed interventions are specific and tailor-fitted to actual local conditions.

Capital investments for the sanitation targets will include programs in basic sanitation, septage management, and sewerage management.

For basic sanitation, it is recommended that DOH prescribe a national basic sanitation program for the entire country – looking into a combination of micro-financing and behavior change communication. A Department Administrative Order on standard septic tank use and design will also be released by DOH soon after the planned consultation activities are rolled out in the country's three major island groups (Luzon, Visayas, and Mindanao).

For septage management, a clustering approach will be recommended to reduce capital costs and attain economies of scale. Clustering of municipalities to be served by their dedicated proposed STP had been accomplished by the provinces' representatives in the regional consultations. Clusters shall be discussed in detail in the succeeding regional roadmaps.

| Access to<br>Improved<br>Sanitation                                                 | <u>Planning &amp; Development</u><br><i>Planning</i><br>Program or Project Design<br>Institution Building<br>Training<br>Financing<br>Climate/Disaster Resiliency<br>Policy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Service Provision<br>Operations<br>M&E<br>Expansion<br>Amalgamation<br>Automation                                                                                                                                                                                                                                                                                                                                                                             | <u>Regulation</u><br>Tariff/Pricing<br>Resource<br>Arbitration<br>Registration, Permits,<br>Rights                                                                                                                                                                                                                                                                                                                                                                                                                                   | Promotions<br>Social Preparation<br>Advocacy<br>Demand Creation<br>Behavior Change                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Access<br>Areas with 60% to<br>100% Improved<br>Sanitation<br>Coverage         | <ul> <li>Local Sustainable Sanitation<br/>Plan (LSSP) should be<br/>incorporated into the WSS<br/>Sector Plan, local development<br/>plan (LDP), annual investment<br/>program (AIP), and local health<br/>plan.</li> <li>A sewerage system program<br/>should be developed to provide<br/>service in the urban core<br/>coordinating with those in<br/>charge of the septage<br/>management program; project<br/>urban sprawl</li> <li>A National Sewerage and<br/>Septage Management Program<br/>(NSSMP) subsidy grant for<br/>sewerage and septage<br/>management programs (SMP)<br/>should be in place.</li> <li>Capacity development in<br/>regard to sewerage systems<br/>should be planned and<br/>integrated with other<br/>infrastructure.</li> <li>A sanitation ordinance covering<br/>sewerage system and septage<br/>management services should<br/>be passed, possibly integrating<br/>it into the environment code<br/>and Water Quality<br/>Management Areas (WQMA)</li> </ul> | <ul> <li>Sanitation programs<br/>should focus on<br/>implementing sewerage<br/>systems and completing<br/>septage management<br/>programs.</li> <li>Expansion of urbanized<br/>and urbanizing barangays<br/>should be pursued.</li> <li>M&amp;E system should<br/>conform to PSA/Census<br/>(covered by sewerage<br/>system, households<br/>desludged, and on-site<br/>systems).</li> </ul>                                                                   | <ul> <li>Tariff should be computed using full cost recovery with infusion of capex subsidy for sewerage projects.</li> <li>LGU implementers have undergone compliance training given by DOH and DENR (particularly in sewerage systems), and the Dept. of Agriculture (DA) with respect to regulations/guidelines governing disposal of by-products.</li> <li>Penalties should be strictly imposed on those not complying with certain requirements, including LGUs/WDs by filing cases with the environmental ombudsman.</li> </ul> | <ul> <li>Promotions should focus<br/>on enjoining the public to<br/>connect to the sewerage<br/>system when made<br/>available stressing the<br/>importance of compliance<br/>and the benefits<br/>therefrom.</li> <li>Promotional efforts<br/>regarding water demand<br/>management should be<br/>supported to minimize<br/>wastage and<br/>unnecessary use of<br/>water.</li> <li>Building buy-in for paying<br/>for sanitation services<br/>should be promoted.</li> </ul> |
| <b>Medium Access</b><br>Areas with 30% to<br>59% Improved<br>Sanitation<br>Coverage | <ul> <li>Local Sustainable Sanitation<br/>Plan (LSSP) should be<br/>incorporated into the WSS<br/>Sector Plan, LDP, AIP, and<br/>local health plan.</li> <li>A septage management<br/>program should be developed<br/>to provide service to the entire<br/>population using a customized<br/>approach in rural areas.</li> <li>The NSSMP subsidy grant<br/>should be included in septage<br/>management programs.</li> <li>A sanitation ordinance covering<br/>septage management services<br/>should be passed, possibly</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Sanitation programs<br/>should focus on<br/>implementing septage<br/>management programs<br/>and completing projects<br/>on basic sanitation and<br/>zero open defecation.</li> <li>Systems should be<br/>expanded to cover<br/>increase in population<br/>and additional buildings.</li> <li>M&amp;E system should<br/>conform to PSA/Census<br/>(covered by households<br/>desludged and on-site<br/>systems).</li> <li>Sewerage system</li> </ul> | <ul> <li>Tariff should be computed<br/>using full cost recovery<br/>with possible infusion of<br/>capex subsidy for<br/>septage management<br/>projects (with possible<br/>clustering of LGUs).</li> <li>LGU/WD implementers<br/>have undergone<br/>compliance training given<br/>by DOH and DENR<br/>(particularly in septage<br/>management systems),<br/>and by DA regarding<br/>regulations/guidelines on<br/>disposal of by-products.</li> <li>Strict penalties should be</li> </ul>                                            | <ul> <li>Promotions should focus<br/>on enjoining households<br/>to have their septic tanks<br/>desludged once SMP is in<br/>place; the importance of<br/>building the right septic<br/>tanks and the benefits of<br/>good sanitation should<br/>likewise be promoted.</li> <li>Building buy-in for paying<br/>for sanitation services<br/>should be promoted.</li> </ul>                                                                                                     |
|                                                                                     | integrating it with the<br>environment code and WQMA<br>action plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | programs should be introduced.                                                                                                                                                                                                                                                                                                                                                                                                                                | imposed on those not<br>complying with certain<br>procedures, including<br>LGUs/WDs, by filing<br>cases with the<br>environmental<br>ombudsman.                                                                                                                                                                                                                                                                                                                                                                                      | Service UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Areas with 0% to 29% Improved Sanitation Coverage

household/building has a toilet and septic tank and access to on-site treatment.

make sure that every

- Financial support should be pursued for basic sanitation programs – a combination of micro-finance and behavior change communication. possibly integrating outputbased aid (OBA), sweat equity, and sanitation vouchers.
- Interventions should be planned for rural and inaccessible areas; alternative on-site systems should be developed.
- Septage management programs should be initiated.

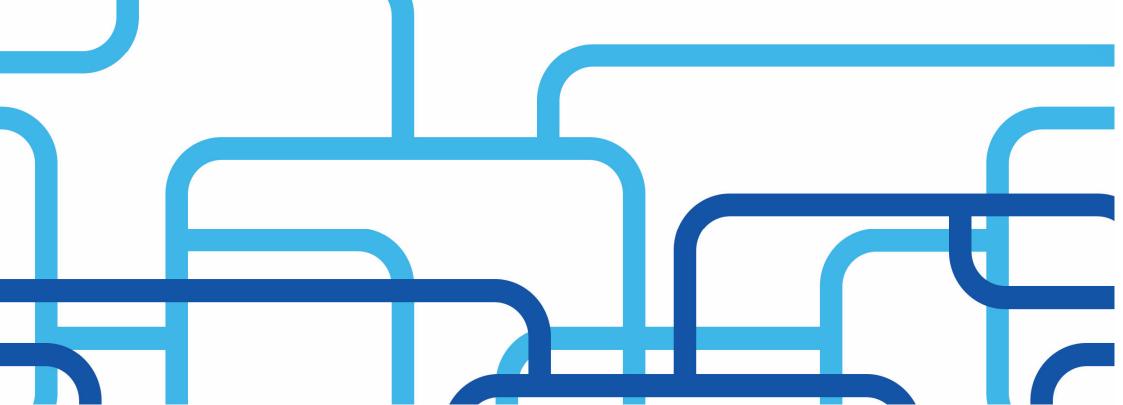
site systems).

required. Strict penalties should be ŧł imposed on those not complying with building regulations and laws on open defecation.

Sanitary Inspectors

guidelines should be

regulations and


- be raised.
- Public awareness of the health and environmental hazards of open defecation should be generated.



## NATIONAL ECONOMIC AND DEVELOPMENT AUTHORITY

12 St. Josemaria Escriva Drive, Ortigas Center, Pasig City Trunkline: (+632) 86310945 to 56 Email: info@neda.gov.ph

www.neda.gov.ph
fy NEDAhq

